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ABSTRACT 

 

 

A simple framework has been developed to optimize acoustic diffusers in reasonable time 

without the need for boundary element predictions. The approach combines evolutionary 

optimization and time domain simulation to design shallow, profiled surfaces that create a 

large amount of diffusion.  The “lean” optimization uses an integer genetic algorithm to find 

candidate designs in a low resolution design space. It compares candidates using a finite 

difference time domain model to predict diffusion performance. The process has been shown 

to produce diffusers that offer an excellent trade-off between performance and compact 

geometry. Fractal forms have been generated from these results to extend the bandwidth 

over which diffusion occurs. The new optimized and fractal diffusers are compact, modular, 

and based on the set of integers between zero and 16. This makes them practical to 

simulate with high accuracy using finite difference time domain and simple to construct 

using low precision manufacturing. 
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1. INTRODUCTION 

 

An ideal acoustic diffuser is a surface that causes an incident sound wave from any 

direction to be evenly scattered in all directions. Until recently the design of diffusers was 

practiced by a few knowledgeable acousticians—yet many enthusiasts and music industry 

professionals saw merit in emulating the designs. With the publication of Acoustic 

Absorbers and Diffusers (2004), Cox and D’Antonio [1] have brought diffuser design 

techniques to a larger audience. The result has been an explosion of Schroeder [2] diffusers 

in the professional audio marketplace. However, the design of optimized diffusers has 

remained the domain of experts; notably, the industry’s leading innovator, RPG Diffuser 

Systems [3]. It appears that diffuser optimization is avoided by designers and acoustical 

engineers because it requires a sophisticated framework. The heart of this framework is a 

simulation to predict acoustic scattering. For this a boundary element model is the 

natural—but not always viable—choice. 

 

1.1. Objective and Scope 

 

This work focusses on solving a practical problem that will be called “the lean diffuser 

optimization problem”. The design objective is to answer the following question: 

 

What modular sound diffuser provides an ‘optimal’ trade-off between uniform scattering and 

compact geometry, and how can this surface be discovered without using boundary element 

predictions?  

 

‘Optimal’ in this context does not mean ideal. It implies that within a given framework, 

optimization is used to explore the solution space (the set of candidate solutions) and an 

excellent candidate is picked. The quality of the solution will depend on how thoroughly the 

optimization process searches the solution space, which will depend on time constraints. In 

this work a practical optimization run is generally not expected to find the global optimum. 

The design framework will allow a variety of problems to be solved; therefore, the method is 

at least as significant as the resulting diffuser designs. 

 

1.2. Structure 

 

Key points from the literature are condensed in Chapter 2. Based on this, the lean 

optimization problem and the design method used to solve it are presented in Chapter 3. 
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Chapter 4 covers the implementation of a finite difference time domain model for scattering 

prediction, and Chapter 5 presents the measures of diffusion quality used for evaluation. 

After preliminary design considerations in Chapter 6, Chapter 7 demonstrates how the 

optimization problem was solved using an integer genetic algorithm. The designs are 

enhanced in Chapter 8 via the self-symmetry properties of fractals. Finally, in Chapter 9 a 

larger scale time domain simulation is used to further assess the optimized designs, and the 

results are interpreted to reveal the winning diffuser geometries. 

 

1.3. A brief review of diffusers and diffusion 

 

When designing a room with high quality acoustics, one of the primary goals is to achieve a 

diffuse reverberant sound field. Diffusers are used in studios and live music spaces to 

prevent specular reflections that would interfere with critical listening (Figure 3), and to 

provide a controlled reverberation, or ambience. They are functionally mounted in plain 

sight, therefore acousticians are interested  in developing designs with various visual 

aesthetics to expand the palette of forms available to the end-user—perhaps a musician 

with a home studio, or an architect who needs a diffuser to blend in with a new building [4]. 

Forms with a low profile are desired for the lean optimization problem, and forms that pose 

obvious hazards to human safety are automatically disqualified. A diffuser shaped like an 

array of icicles, for example, would pose an eye hazard when mounted on a wall (Figure 1).  

 
 

 
Figure 1  The “stick room” achieves exceptional diffusion, but invites eye injury.  

Most control rooms use significant absorption to create a reflection free zone (RFZ) around 

the listener. In contrast, this space at Blackbird Studios uses liberal 2D diffusion to achieve a 

level of clarity that may be acceptable for critical listening (depending on one’s school of 

thought). One-inch square pegs with lengths varying from 6 to 40 inches are used to realize a 

design based on the prime number 138,167. (Source: Digizine, 2011) [5]  
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1.3.1. Spatial and temporal Dispersion 

 

A ‘diffuse reflection’ is one dispersed in both space (spatial dispersion) and time (temporal 

dispersion), as depicted in Figure 2. Diffusers are often designed to have uniform spatial 

dispersion, assuming that temporal dispersion will also occur [1]. Temporal variation is less 

convenient as a design parameter because it does not guarantee uniform spatial dispersion 

and often introduces colouration to the frequency spectrum (Figure 3). An ideal diffuser will 

generate both uniform spatial and temporal dispersion over all audible frequencies.  

 

 

Figure 2  Spatial and temporal dispersion generated by a Schroeder diffuser. 

Temporal dispersion (left) can be interpreted from an impulse response plot; spatial 

dispersion (right) can be interpreted from a polar plot (After Cox and D’Antonio [1]). 

 

 
Figure 3  Temporal and frequency response for flat (top) and diffusive (bottom) surfaces.  

The frequency response is shown for the reflected sound only. The frequency response for the 

flat surface is characterized by a high pass filter response, and for the diffuser exhibits peaks 

and nulls spaced irregularly with respect to frequency (After Cox and D’Antonio [1]).  
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2. LITERATURE REVIEW 

 

This chapter explores existing methods of diffuser design and summarizes their relative 

merits. Methods that optimize a surface for uniform scattering are emphasized.  

 

2.1. Schroeder Diffusers 

 

Schroeder diffusers are designed using convenient mathematical principles that allow them 

to be constructed as a series of wells separated by thin fins. The wells have equal width and 

different depths, with depths determined by a theoretic number sequence. The maximum 

well depth and well width are commonly used to define the bandwidth for predictable 

dispersion—but in reality, quality diffusion may extend beyond the predicted upper limit 

[1]. 

 

While commercially successful to date, many acousticians are reluctant to use these designs 

as they do not visually complement modern architecture. Additionally, the number 

theoretic designs have performance limitations, most notably:  
 

 They only achieve ‘optimum’ dispersion at discrete frequencies. 

 They are designed based on simplified theory: ‘optimum diffusion’ means equal 

energy in the diffraction lobes [1] . This is not the same as uniform scattered energy 

in all directions. 

 

Optimization algorithms can be used to improve the design of Schroeder diffusers, with the 

ultimate goal being uniform broadband dispersion.  

 

 
Figure 4  Scattered pressure from a Schroeder diffuser (left) and plane surface (right). 

 (After Cox and D’Antonio [1]) 
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Figure 5  A one-dimensional Schroder diffuser (After Cox and D’Antonio [6]). 

 

 

2.1.1. Maximum length sequence diffusers 

 

In 1975, Schroeder proposed constructing diffusers based on Maximum Length Sequences 

(MLS) [2].  He justified this using a fact from optics theory: the far field scattering can be 

approximately predicted by taking the Fourier transform of a ‘surface’, thus the power 

spectrum and surface scattering are closely related [1].  The MLS was chosen as it has a 

flat power spectrum at all frequencies. 

 

One dimensional MLS diffusers consist of strips of material with two different depths, 

placed according to an MLS. For example, one period of an N = 7 MLS surface could be 

based on the sequence [0, 0, 1, 0, 1, 1, 1]. The diffuser shape is represented by a box with 

variable admittance on the front surface. 

 

The admittance of the surface is determined from plane wave propagation in the wells, 

leading to design equations that relate physical dimensions to dispersion performance.  

This makes it straightforward to design a surface that achieves maximum scattering at a 

specific frequency.  

 

An octave above the design frequency, MLS diffusers exhibits specular reflection. At this 

critical frequency the phase-grating fails because the well depth is half a wavelength, 

causing waves to re-radiate with the same phase. To solve this narrow-bandwidth problem, 

Schroeder suggested different number sequences, such as the quadratic residue sequence.    

 

 
Figure 6  Cross-section profile through a single period of an N = 7 MLS diffuser. 

 (After Cox and D’Antonio [1]) 
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2.1.2. Quadratic residue diffusers 

 

Quadratic residue diffusers (QRD) are designed to extend the dispersion characteristics of 

MLS diffusers over a wider bandwidth. The QRD achieves optimum scattering at integer 

multiples of the design frequency, and generally achieves reasonable dispersion in between 

these frequencies [1]. Good dispersion over more frequencies can be achieved by using 

orthogonal modulations, resulting in diffusers with two different design frequencies [7,1].  

 

 
Figure 7  Cross-section profile of an N = 7 QRD® (After Cox and D’Antonio [1]). 

 

 

2.1.3. Primitive root diffusers 

 

Primitive root diffusers (PRD) are designed to produce a notch in the scattering response, 

with even energy in the other diffraction lobes. Like the QRD, optimum scattering is only 

achieved at integer multiples of the design frequency.  Unfortunately, the pressure nulls 

achieved by the PRD are located elsewhere in the spectrum.  

 

The Cox-D’Antonio-modified primitive root diffuser (CDMPRD) is a revised notch diffuser 

designed to solve this problem. In effect, the technique introduces a frequency shift: the 

reflection coefficients are appropriately aligned around the unit circle at multiples of the 

design frequency, resulting in the desired pressure nulls [6,7,1].   

 

It may seem that the PRD is useful in small spaces as a means to minimize the energy 

reflected in the specular reflection direction; however, as PRDs only work at discrete 

frequencies, they do not make practical notch filters. The PRD does remain useful as a 

diffuser, having similar performance to the QRD. 

 

Numerical optimization can be applied to form a broader notch over a wider frequency 

range [6]—but this is difficult to do.  In general, optimization struggles to shape polar 

responses, but is successful as a method to achieve uniform dispersion. 
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Triangles or pyramids can be used to achieve a more broadband notch, but they restrict the 

angle of incidence over which for which diffusion is effective [1].  

 

2.1.4. Other sequences 

 

The MLS, quadratic residue and primitive root sequences are not the only suitable 

sequences for diffuser design. Other promising sequences include [1]: 

 

 Index sequences, which should yield diffusers with similar performance to the PRD, 

but with extra absorption. 

 Short power residue sequences, which under certain conditions can be formed by 

undersampling longer primitive root sequences. 

 The Chu sequence, which will yield similar performance to a QRD.  

 Optimized sequences.  

 

Promising sequences are those with good autocorrelation properties [1]. If the 

autocorrelation function of the reflection coefficients is a delta function, its Fourier 

transform will reveal a flat power spectrum. This corresponds to an even scattering 

distribution—in effect, a good diffuser. 

 

 

2.1.5. Modulation schemes and fractal constructions 

 

As Schroeder diffusers are periodic, the scattered energy is dominated by grating lobes. A 

more even scattering distribution can be achieved by making the diffuser aperiodic or by 

increasing the spacing between periods.  

 

Aperiodicity will result from using a long number sequence with good autocorrelation 

properties. However, this is rarely a viable design practice because there are few known 

large aperiodic polyphase sequences [1]. Moreover, periodicity facilitates modular 

manufacturing and cost effective shipping. Aperiodicity does not. 

 

One practical solution is to use a modulation scheme [1,6,7]. Typically, the best choice is to 

use a diffuser and its inverse, arranged to achieve aperiodicity (Figure 8).  
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Figure 8  A basic aperiodic modulated diffuser.  

Aperiodic modulation is provided by arranging an optimal binary sequence of the base shape 

(binary 1) and flipped shape (binary 0) (After Cox and D’Antonio [6]). 

 

 
Figure 9  Effects of periodicity and modulation (After Cox and D’Antonio [1]). 

 

Fractal formations are an elegant solution to periodicity, absorption and bandwidth 

problems.  High frequency diffusers can be nested within low frequency diffusers, exploiting 

the self-symmetry property of fractals to provide full spectrum diffusion within a single 

device [8,1]. 
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Figure 10  The QRD Diffractal® by RPG Diffusor Systems.  

Left: Construction of the Diffractal consists of first and second generation fractals based on 

the quadratic residue sequence. Right: Polar scattering response for seven periods of an (a) 

QRD and (b) QRD Diffractal at the high design frequency. Simulated using near-field 

Kirchhoff diffraction theory (After Cox and D’Antonio [9]). 

 

 

2.1.6. Two-dimensional (hemispherical) diffusers 

 

Thus far only planar devices have been addressed. Planar diffusers scatter incident sound 

into a hemi-disc, while two dimensional diffusers disperse sound in a hemispherical pattern 

(Figure 11). 2D Schroeder diffusers are constructed using two-planes, each designed for 

optimal scattering. One plane scatters in the x-direction, the other scatters in the z-

direction, resulting in even lobes in a hemisphere. The device typically takes the form of a 

grid, with cavity depths determined by applying the Chinese remainder theorem to fold two 

1D sequences into a 2D array [1]. Each 1D sequence should be based on the same prime 

number.  

 

As 2D diffusers scatter in two planes they deliver less scattered energy to a receiver than 

1D devices, making them less efficient. Additionally, 2D diffusers constructed as a grid 

have higher absorption per unit area than their 1D counterparts.  
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Figure 11  Hemidisk scattering pattern for a one-dimensional QRD (left). 

Hemispherical scattering pattern for a two-dimensional QRD (right). 

Incident plane wave is at 45° with respect to surface normal (After Cox and D’Antonio [9]). 

 

2.1.7. Phase optimized Schroeder and stepped diffusers  

 

Instead of relying on an optimal number sequence with a flat power spectrum, the design of 

Schroeder diffusers can be improved by optimizing for uniform scattering directly. This 

approach combines multi-dimensional optimization techniques with boundary element 

predictions to design phase optimized diffusers (POD) [10].  

 

The first step to optimizing the Schroeder is to remove the fins between the wells, yielding 

a simpler, superior design: the stepped diffuser. This simple modification improves 

dispersion performance [11] and provides these additional benefits:  

 Simplified geometry reduces manufacturing costs.  

 Removal of the resonant wells results in lower absorption.  

 

The optimization process starts by randomly choosing a well depth sequence, then 

predicting the scattering and assessing its quality. The goal is to minimize the error 

between the predicted scattering and desired scattering. This is done by making 

incremental adjustments to the well depth sequence until a figure of merit it satisfied (in 

effect, minimizing the error).  

 

To solve the diffuser optimization problem, [1] the following scaffolding must be in place: 

 

1. A model to predict the scattering from a given diffuser design. 

2. An error parameter or figure of merit to define the quality of the scattering. 

3. An optimization algorithm to change the well depth sequence and search for an 

appropriate solution.  
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A boundary element model (BEM) is generally the first choice for scattering prediction in 

acoustical design, but there are other options including Fraunhofer models, Fourier models, 

finite difference time domain (FDTD) methods and finite element analysis (FEA)  [1,12,13]. 

While a BEM can be slow to compute, the results are accurate. Older studies used 

Fraunhofer solutions which offer fast optimization at the expense of solution accuracy 

[11,13]. Another approach is to use simple models to narrow in on a solution region, and a 

more accurate model to compute the solution.  

 

A single figure of merit for uniform broadband dispersion can be formed from the mean and 

standard deviation of the diffusion coefficients across all frequencies. This works as follows 

[1]: 

 The diffusion coefficient at each one-third octave band is computed from the 

prediction model [11]. 

 The mean and standard deviation of the diffusion coefficient spectra are calculated. 

 The standard deviation is subtracted from the mean. 

 

Thus a penalty is applied to the figure of merit, proportional to the unevenness of the 

diffusion coefficient spectra. If the predicted diffusion is very uneven across all frequencies, 

the standard deviation will be large, and a large penalty will be applied to the figure of 

merit. 

 

If the gradient of the figure of merit is known, using it can greatly speed up the 

optimization process. In most cases of diffuser optimization the gradient is not available, 

therefore suitable optimization algorithms are those that depend only on function values. 

 

 Downhill simplex is a natural choice. While slow, it is robust to non-linear 

constraints and can be applied to wide range of diffuser optimization problems.  

 An alternative is to use a genetic algorithm, which requires extra set up as it must 

be carefully tuned to a given problem.  

 Quasi-Newton gradient descent methods are fast, but unreliable when combined 

with BEM prediction. These methods rely on approximate gradients, calculated with 

finite differences and data retrieved from the prediction model. As a BEM prediction 

will exhibit small inaccuracies, there is a high risk of numerical error propagation 

that will throw off the gradient.  

 

‘Minimizing’ the error between the desired response and the figure of merit involves 

searching for the global minimum, or else a suitable local minima in the feasible region (the 
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space of all candidate solutions). As the degrees of freedom increase, the region to search 

becomes more complex and the global minimum becomes virtually impossible to find—but 

at the same time it becomes less important. Searching for a suitable solution will typically 

involve evaluating the scattering a thousand times [1].  

 

 

 
Figure 12  Optimized stepped diffuser for the rear wall of a performance facility. 

(After Cox and D’Antonio [12]) 

 

 

 
Figure 13  Process to find an optimal well depth sequence for a phase grating diffuser. 

(After Cox and D’Antonio [1]) 
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2.2. Geometric Diffusers 

2.2.1. Curved surfaces 

 

Compared with other diffuser designs, curved surfaces have the potential benefit of lower 

construction costs and lower absorption. In theory, the cylinder appears to be the perfect 

diffuser design [1]; but in practice, a single-cylinder design would be too deep for most 

architectural applications. 

 

Convex reflectors based on part of a circle—such as a semicylinder (ellipse)—only disperse 

sound well for normal incidence. Better response at oblique incidence can be achieved by 

forming an array of semicylinders, or by creating a more complex shape using optimization.  

 

When placed in an array the response from a single cylinder becomes secondary to the 

response of the array [1]. For such an array to be effective cylinders must be spaced far 

apart, as randomly as possible; otherwise, modulation schemes are required to reduce 

periodicity. 

 

2.2.2. Optimized curved surfaces 

 

Curved surfaces can be optimized to meet performance and aesthetic requirements for most 

architectural applications. For an optimization algorithm to change the shape of the 

surface, the shape is first described as a set of numbers represented by a Fourier series. In 

theory, an infinite Fourier series can represent any shape—but for optimization to be 

possible, the series must be truncated.  4-6 harmonics are typically used to avoid 

unnecessary complexity which would increase manufacturing costs [1]. 

 

To achieve an acoustically optimized shape that satisfies physical design specifications, 

non-acoustical constraints are typically needed. Three constraint methods are mentioned by 

D’Antonio and Cox [1]:  

 

 Fuzzy constraints check to see if a surface is sufficiently close to constraint points 

during optimization. If not, a penalty is applied to the error parameter.  Fuzzy 

constraints add complexity to the optimization problem, as the error parameter 

depends on both scattering quality and shape quality. While this system can be used 

to avoid simple physical obstacles, it is inelegant as a means to satisfy a desired 

visual aesthetic.  
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 A spline construction with linear constraints can be used to simplify the above 

problem. 

 A base shape can be designed from shape variables, and distorted to change the 

acoustical performance.  The same compression, modulation and warping techniques 

used in image processing can be applied to distort the surface while preserving 

desired visual characteristics.  

 

 

The shape optimization process is given in Figure 14. Downhill simplex is typically used as 

it is robust to non-linear constraints—but the resulting search process is slow, and may 

require many trials with different starting locations [14]. 

 

 
Figure 14  Shape optimization process (Source: rpginc.com [3]). 

 

 

All optimized curved diffusers tested by Cox and D’Antonio [1] performed at least as good as 

tan arcs of a circle. In general, these surfaces have the best dispersion performance of all 

diffuser designs—provided that periodicity can be avoided. Periodicity may be dealt with by 

using a modulation scheme if diffusers are arranges in arrays, or by constructing a single 

large surface. 
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2.2.3. Fractals 

 

High quality dispersion can be achieved by constructing fractal surfaces that simulate 

fractional Brownian motion. Fractional Brownian diffusers (FBD) constructed using 

Fourier synthesis result in complex surfaces governed by many shape parameters [8].  Such 

surfaces may be manufactured using extrusion, but due to the many shape variables it is 

not practical to optimize them for best diffusing performance.  

 
 

 
Figure 15  Fourier synthesis generation of a surface that represents Brownian motion.  

By extrusion, the surface can be manufactured into a fractional Brownian diffuser, or FBD 

(After Cox and D’Antonio [1]).  

 

 
Figure 16  Three fractal surfaces generated by Fourier synthesis.  

Input noise: (a) Brown noise; (b) Pink noise; (c) White noise (After Cox and D’Antonio [1]). 

 

Fractal generation using step function addition 

A series of randomly displaced step functions can be used to generate a fractal surface that 

simulates Brownian motion. This enables the number of parameters defining the surface to 

be reduced, and therefore the use of optimization techniques. True Brownian motion would 

require an infinite number of superimposed step functions, each having random amplitude 

and a random displacement along the width of the diffuser (the x-axis of Figure 17).  
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Figure 17  Fractal generation using randomly displaced step functions.  

(a) 20 step functions. (b) 10 step functions. (c) 1 step function (After Cox and D’Antonio [1]).  

 

Tanh Addition Diffusers 

Step function addition may generate surfaces that exhibit specular reflection. To avoid this 

problem, functions with smoother transitions are typically used. Tanh Addition Diffusers, 

also called Random Addition Diffusers (RAD), use the sum of many hyperbolic tangent 

functions to form surfaces that can be optimized—with excellent results [1]. The optimized 

fractal surfaces can achieve comparable performance to optimized curved surfaces, and 

better performance than the arc of a circle for random incident sound. Surprisingly, under 

certain conditions this fractal generation technique will yield a semicircular surface [8]. 

 

 

2.3. Hybrid Surfaces 

 

Hybrid surfaces achieve variable impedance by using patches of absorptive and reflective 

material. These diffusers can be designed with excellent dispersion characteristics, but 

their applications are limited as they cannot be designed for minimum absorption. In 

environments that require simultaneous control of absorption and diffusion, hybrid 

surfaces offer attractive benefits: 

 

 Manufacturing is simple and cheap. 

 Hybrid surfaces have a shallow profile compared with other diffusers. 

 Treatment can be easily hidden to blend in with any environment. 

 Optimization gives complete control over the reflectivity [15]. 

 
 

2.3.1. Planar hybrid surfaces 

 

The Binary Amplitude Diffsorber (or BAD™ panel) by RPG is a flat hybrid surface 

constructed from a porous absorber faced with a perforated mask (Figure 18).  Such panels 
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are often highly absorptive up to about 2 kHz, thus only the dispersion performance over 

mid-to-high frequencies needs to be considered [16,1]. 

 

One-dimensional sequences 

To maximize dispersion in a one-dimensional hybrid diffuser, the surface binary elements 

are distributed based on an optimal binary sequence with good autocorrelation properties 

[1,17]. Potential sequences include the MLS, 1D optical sequences, 1D ternary and 

quadriphase sequences [18,19].  

 

Unfortunately, existing number sequences offer few choices for absorption coverage. For 

example, the MLS gives a panel open area of about 50%, which is generally more absorption 

coverage than desired. To solve this problem, numerical optimization is typically used to 

find a family of discrete sequences with low mutual cross-correlation.  These are then 

concatenated together to form a longer sequence. Searching for this family of sequences is a 

discrete optimization problem, best solved using a genetic algorithm on sequences of length 

N < 48, or an exhaustive search when N < 20 [1,15]. 

 

Two-dimensional sequences 

RPG developed a method to design hemispherical scattering hybrid surfaces by using the 

Chinese Remainder Theorem to fold 1D sequences into 2D arrays, while preserving the good 

autocorrelation and Fourier properties [16]. It is also possible to construct optimal binary 

sequences on a hexagonal array pattern [1]. 

 

 
Figure 18  Assembly of the Binary Amplitude Diffsorber, a planar hybrid surface.  

Porous absorber (left), reflective mask (middle), and optional fabric covering (right).  

(After Cox and D’Antonio [1]) 

 

Improving the Binary Amplitude Diffusor 

Payne-Johnson, Gehring and Angus suggest that there is an opportunity to improve the 

BAD design, proposing an easily manufactured surface using small variable-size square 

panels [20]. The size of these panels would be determined using an M-sequence, and they 

would be grouped in such a way that diffusion is preserved despite periodic effects.  This 
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may be done with modulation techniques [20], similar to those used for arrays of Schroeder 

and curved diffusers. 

 

2.3.2. Curved hybrid surfaces 

 

Specular reflections are attenuated, but not eliminated when using flat hybrid surfaces. 

Curvature can be incorporated into the design to break up specular reflections, resulting in 

a surface with similar absorption to the BAD panel, but greatly improved dispersion. 

 

Curved hybrid surfaces are welcome guests in listening rooms and recording studio control 

rooms, as they enable the sweet spot to be spatially expanded [1]. In applications where 

moderate absorption is acceptable, they may compete with other diffuser designs: for 

example, a curved hybrid surface can be designed with one quarter the depth of a rigid 

optimized curved surface, and achieve dispersion of almost the same quality [1]. 
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3. THE LEAN DIFFUSER OPTIMIZATION PROBLEM 

 

This work focusses on solving an established problem—diffuser optimization—in a new 

practical context: “The lean diffuser optimization problem” places material and time 

constraints on the researcher and requires that the diffuser design method is simple. The 

bulk of the work was to implement a lean optimization framework, and with it solve the 

problem: 

 

What modular diffuser provides an ‘optimal’ trade-off between uniform scattering and 

compact geometry, and how can such a surface be designed without using boundary element 

predictions?  

 

3.1. Design objectives 

 

Specifically, a successful diffuser design must satisfy the following criteria:  

 

1. It must be shallower than existing profiled diffusers, with comparable or better 

broadband diffusion performance. 

2. It should be modular, and designed to disperse sound optimally when modules are 

arranged an array. 

3. It must be economical to manufacture and distribute. 

4. The geometry must not pose obvious hazards to human safety. 

5. The design method should utilize high quality scattering predictions, but it should not 

require a custom boundary element implementation1.   

6. Optimization must produce a suitable design within a reasonable solution time.  

7. The design should be suitable for application on the back wall of a small-to-medium 

sized recording studio control room, where the purpose is to disperse first reflections 

from a hypothetical sound wave arriving at zero degrees incidence2.  

8. The design method should also be applicable to solving a larger problem: optimizing 

a surface for uniform scattering of an incident wave from any direction.  

 

 

                                                 

 

1 There was a tight time frame on this project, and limited tools were available. 
2 This is a simplifying assumption.  
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3.2. Feasible approaches to optimal diffuser design 

 

Numerous design methods were covered in the literature review, but not all are viable or 

worthwhile. Table 1 summarizes the various methods of designing a diffuser using 

numerical optimization. For any of the non-hybrid diffuser design methods, the minimum 

requirements to design a diffuser optimized for uniform scattering include: 
 

1. A validated model for scattering prediction, such as a BEM or FDTD simulation. 

2. A figure of merit or error parameter. 

3. An implementation of the optimization problem, typically using downhill simplex to 

perform the minimization. 

 

For numeric theory Schroeder diffusers and hybrid diffusers, a discrete optimization 

problem can be formed to search for a theoretically optimal number sequence with good 

autocorrelation properties. While this is a logical approach for the design of hybrid diffusers 

with customized absorption, it may have little merit for Schroeder diffuser design because 

optimal number sequences such as the quadratic residue sequence are already available.  

Moreover, the above approach is based on an approximate theory: it assumes that a number 

sequence with a flat power spectrum will yield optimal scattering. The current work does not 

make that assumption; and will instead use a design-by-simulation approach. 

 

Rigid optimized curved surfaces generally have the best performance potential, and hybrid 

surfaces are blessed with simplified construction and a neutral aesthetic. However, the 

diffusers that most naturally facilitate efficient scattering with minimal absorption are 
 

 Fractal Schroeder and stepped diffusers. 

 Phase optimized stepped diffusers. 

 Tanh addition diffusers. 

 

The above designs approaches have a common objective:  to achieve optimal diffusion by 

simulating a rough surface based on many instances of a simple, repeatable unit (e.g., a 

step function).  Because they are related, these design approaches might use a similar 

framework for simulation and optimization.  
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Table 1  Prospective Design Approaches 
Diffuser 

Design 

Method 

Optimization Approach Analysis 

Methods 

Advantages Disadvantages 

Search for a sequence with 

minimum side lobe energy in its 

autocorrelation.  

 

BEM,  

Thin panel 

BEM, 

Kirchhoff, 

FDTD, FEA. 

Elegant design equations.  

Optimization can be used 

to improve the theoretical 

designs, particularly those 

with few wells per period.  

Fractal construction can 

increase bandwidth [21].  

Visual appearance may 

conflict with room 

aesthetics. 

 

Manipulate the well depth series to 

minimize the standard deviation of 

the polar response. Check progress 

with boundary element predictions. 

Gradient is typically not available. 

Minimization with N degrees of 

freedom (e.g. N = 7, 36). Typical 

techniques: downhill simplex, 

genetic algorithm, quasi-Newton. 

BEM, 

Kirchhoff, 

FDTD, FEA. 

Uniform scattering is 

optimized directly, resulting 

in designs with better 

dispersion than numeric 

theory diffusers. 

Potentially straightforward 

to simulate using FDTD. 

 

Computational cost. 

Requires boundary element 

or FDTD predictions during 

optimization [10], [3]. 

Manipulate the surface design 

using either  

a) Fuzzy constraints (inelegant).  

b) Distortion applied to shape 

variables (superior) [1]. 

Use a standard minimization 

technique like downhill simplex, 

with many different starting 

locations [14]. 

BEM,  

Kirchhoff, 

FDTD, FEA. 

Simple geometry affords 

lower construction costs 

and lower absorption.  

Best diffusion performance 

potential (requires a 

modulation scheme, unless 

the surface is very large).   

Customizable aesthetics. 

Much deeper than 

comparable performing 

curved hybrid surfaces.  

Requires boundary element 

predictions during 

optimization [10], [3]. 

Enable optimization by using a sum 

of tanh functions to reduce the 

number of parameters defining the 

surface. Alter shape coefficients 

using a standard routine like 

downhill simplex [8]. 

BEM,  

Kirchhoff, 

FDTD, FEA. 

For random incident 

sound, the fractal performs 

better than the arc of a 

circle [1]. 

Performance of an 

optimized fractal is 

comparable to an 

optimized curve [1]. 

No improvement over 

optimized curved 

surfaces—fractals often 

have inferior dispersion. 

Requires boundary element 

predictions during 

optimization [10], [3]. 

Discrete optimization of an N 

length sequence. For N < 20, an 

exhaustive search is possible. For 

20 < N < 48, a genetic algorithm 

can be used. To create longer 

sequences, concatenate several 

optimized sequences with low 

mutual cross-correlation [15,18,1]. 

BEM (2-D 

analysis). 

For 3-D 

polar 

balloons, 

must use  

thin panel 

periodic BEM 

[1]. 

FDTD, FEA. 

Low cost. 

Shallow profile. 

Treatment is hidden. 

Optimization gives 

complete control over the 

reflectivity. 

Often highly absorptive up 

to about 2kHz, thus only 

mid-to-high frequency 

dispersion needs 

consideration [1]. 

Optimization is slow, and 

not possible for long 

sequences.  

Optimal design is not 

straight forward: requires 

deriving a family of 

number sequences, 

concatenating sequences 

into arrays and modulating 

to minimize periodicity.  

Patented design process. 

Further improve the variable 

square size panel proposed in [20]. 

For an N-length number sequence 

with M different square sizes to 

BEM,  

FDTD, FEA.  

Fourier 

analysis was 

Potentially better 

performance than existing 

BADs. 

 

Optimization is slow, and 

not possible for long 

sequences.  

If N is fixed, adding more 
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choose from, there are NM degrees 

of freedom. Using modulation 

techniques on a family of optimized 

number sequences, there is the 

potential to position many small 

variable sized panels.   

used for 3-D 

polar plots 

in [20], but it 

is only valid 

for far field 

scattering. 

square size options results 

in exponentially more 

degrees of freedom. If the 

number of square sizes is 

fixed while N is increased, 

the degrees of freedom 

grow geometrically. 

Potential approaches: 

a) Optimize the curvature shape for 

low frequency diffusion; use a pre-

optimized number sequence for the 

hybrid surface coverage. 

b) Use a simple curvature with 

excellent diffusion (e.g., semi-

cylinder) to break up specular 

reflection; use custom-optimized 

number sequences to control mid-

to-high frequency dispersion.  

c) Custom-optimize both shape 

and number sequence [15]. 

BEM,  

FDTD, FEA. 

Curve breaks up the 

specular reflection found in 

flat hybrid surfaces. 

Can be designed with one 

quarter the depth of a rigid 

optimized curved surface, 

and achieve dispersion of 

almost the same quality 

[1]. 

The use of custom 

optimizations greatly 

complicates the design 

process.   

Advanced design 

technique with little 

literature publically 

available. 

 

 

3.3. Practical pitfalls to previous methods of diffuser optimization 

 

Previous approaches to optimal diffuser design do not address the need for high quality 

design using simple to implement tools. Designs based on theoretical optimal sequences are 

simple, but less transferable to the real world than designs found via physical modeling. A 

superior design approach should optimize for uniform scattering directly using the desired 

performance as a figure of merit. This way, form directly follows function. 

 

Phase-optimized diffusers are an example of form following function. However, they can 

only be designed when one has access to (or resources to implement) an optimization 

framework that includes accurate scattering prediction. A BEM is the standard prediction 

method, but it is not simple or quick to implement. Finite difference time domain is 

attractive from an implementation perspective, but at the time of this writing it is 

computationally unfeasible and will result in enormous solution times when applied to the 

standard phase-optimization problem.  

 

The standard diffuser optimization method, as utilized by Cox [11], is to perform a high-

resolution search of the solution space to find an optimal set of well depths, typically using 

downhill simplex. Cox defined solutions using 200 possible well depths with a resolution of 

1 mm. If this problem is set up on a simple FDTD domain, with no special considerations—

it is computationally ridiculous. This provided partial motivation for the lean optimization 

problem. 
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3.4. Design method 

 

Agile prototyping was the strategy: iterative design, frequent testing. Rapid feedback was 

needed, thus the lean optimization framework arose out of practical necessity. It started as 

an FDTD simulation and evolved into a design system. It uses high resolution scattering 

predictions (FDTD) to evaluate candidates, but searches for solutions over a low resolution 

domain using an intrinsically parallel search method (the integer genetic algorithm). The 

resulting solutions are convenient, low-natural number sequences (e.g., zero to16).  

 

The design process utilizes trial and error feedback where appropriate. Most of this 

feedback is handled by numerical optimization; however, the designer must ensure that the 

system is working by interpreting visualizations of the available data. Additionally, the 

finite difference time domain simulation provides intuitive, real-time visual feedback.    

 

The stepped diffuser: a simple geometric template 
 

Stepped diffusers are simpler in form, and perform better than traditional Schroeder 

diffusers [1,11]. While traditional Schroeder diffusers are visually controversial, finless, 

optimized stepped diffusers may have more universal appeal because of a well-known 

principle: beauty in design stems from purity of function. If the form follows function 

principle holds true, a wall that intuitively looks like it is designed to scatter sound will 

have greater public acceptance than a strange looking wall without obvious function. 

Lastly, the design principle Occam’s razor can be used to establish bias: of two diffusers 

with equal performance, the simpler design is generally the better choice—and easier to 

simulate.  

 

A simple geometric template like the stepped diffuser can be placed in a modulated array, 

then optimized to design large diffusive surfaces based on smaller units. Additionally, 

design based on a common shape is potentially iterative, for example: 
 

 Based on test results, optimization constraints can be quickly implemented by the 

designer, making the optimization process interactive.  
 

 A stepped diffuser can be designed for a specific bandwidth, and then potentially 

updated to a fractal formation with expanded bandwidth. This technique combines 

optimization with Schroeder diffuser design theory. Optimization can be carried out 

on a single level of the fractal—or, if the scattering simulation is efficient, the entire 

fractal geometry can be simulated while the optimization algorithm manipulates 

the base shape of the fractal.  
 

 A 1D stepped diffuser can be optimized, then updated to a 2D stepped diffuser using 

the Chinese remainder theorem. 
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A finite difference time domain prediction model: practical to implement 
 

For stepped surfaces, a finite difference time domain (FDTD) simulation is practical to code 

from scratch and facilitates high quality predictions during the optimization process. 

However, FDTD is computationally intensive compared with a BEM. The choice of FDTD is 

justified in Chapter 4.  
 

An evolutionary algorithm: intrinsically parallel  
 

Rather than searching for a single ‘optimal diffusing surface’, this work is concerned with 

generating designs that offer an excellent trade-off between uniform scattering and compact 

form factor. The design approach benefits from an intrinsically parallel optimization 

algorithm that enables the solution space to be thoroughly explored. It follows that an 

evolutionary algorithm is preferred over downhill simplex. Specifically, an integer genetic 

algorithm is the logical choice (justified in Chapter 7) due to practical constraints that arise 

when using FDTD simulation. 

 

Iterative design-by-simulation: interactive and flexible 
 

The design approach can be described as iterative design-by-simulation applied to an array 

of geometric templates. The optimization is constrained such that solutions will be stepped 

diffusers (or fractals based on stepped diffusers). However, the overall design approach is 

interactive and relies on feedback from a human designer. Design proceeds as follows: 

 

1. Develop and test a finite difference time domain simulation framework. 

2. Implement a parameter that measures the quality of diffusion achieved by a 

simulated surface. This is the objective function to be optimized.   

3. Define preliminary constraints for the diffuser geometry based on a) the simulation 

framework and b) the design equations for Schroeder diffusers. 

4. Develop, test and tune the optimization framework.  

5. Perform optimization on modules in an array. 

6.  Feedback. Revise the design framework using an iterative process of cyclic 

prototyping. E.g., change the number of variables, number of modules, array 

modulation, well width, constraints on the well depths, etc.  

7. Generate fractal forms based on the stepped diffusers with the best performance. 

The main goal here is to extend the bandwidth over which diffusion occurs. 

8. Simulate and assess the results. 

9.  Feedback and iterative design.  
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4. PREDICTION OF SCATTERING USING FINITE 

DIFFERENCE TIME DOMAIN 

 

For optimization based on uniform scattering to work, a model that predicts the scattering 

had to be developed and refined.  Because the model needed to communicate with the 

optimization routine, it was not viable to rely on standalone acoustical simulation software 

for predictions. Instead, the prediction model was implemented as a Matlab function that 

can be called during optimization. The two processes are linked to form a design-by-

simulation framework. 

 

The typical modern approach to scattering prediction is to employ a boundary element 

model (BEM); however, given the time constraints on this work it was not feasible to 

develop a BEM from scratch. A finite difference time domain (FDTD) simulation has been 

implemented instead, offering practical benefits:  

 

 FDTD is straightforward to code from scratch. 

 FDTD gives accurate results [22], particularly near the specular reflection angle.  

 Time domain simulation gives real-time visual feedback. At a glance the animated 

FDTD mesh can reveal problems such as numerical dispersion, and acoustical 

patterns such as grating lobes. This makes both designing surfaces and debugging 

code more intuitive.   

 While frequency domain BEMs compute scattering at discrete frequencies, FDTD 

allows a wide frequency range to be excited by a single pulse, resulting in more data 

per prediction. Additionally, the temporal response is obtained directly by recording 

the scattered pressure at a desired location on the mesh. FDTD may be the most 

efficient way to gain reflected impulse responses, making it natural to evaluate the 

temporal dispersion3.  

 Having only recently become a feasible method of evaluating acoustic scattering, 

FDTD has seen limited use compared with BEMs. This trend is expected to change 

because FDTD can simulate a largely unexplored class of problems: time variant 

systems. 

 

                                                 

 

3 The interpretation of temporal dispersion data is not well established; therefore, this work 

evaluates diffuser performance in terms of spatial dispersion.  The study of temporal 

dispersion using FDTD is a future research opportunity.  
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The main weakness of FDTD is that the entire simulation domain must be meshed, and the 

space between mesh nodes limits the geometry of the diffuser and maximum frequency that 

can be represented. As the size or resolution of the domain increases, the size of the mesh 

increases, and the solution time increases by orders of magnitude. For a square domain of 

containing      mesh nodes, it was found that doubling the number of grid points 

increased the solution time by a factor of about 20.  

 

 

If the goal is to simulate the reflected pressure in the far field, the near field to far field 

transformation (NFFFT) combined with absorbing boundary conditions can be used to 

reduce the computation time of FDTD. This work does not consider far field scattering 

therefore the NFFFT was not employed; however, an absorbing boundary condition— in this 

case perfectly matched layers (PMLs)—was crucial. Without PML boundaries a huge FDTD 

grid would have been required, and simulation times would inflate by orders of magnitude.  

 

 

For direct comparison with the BEM predictions of Cox and D’Antonio [11,14,1], diffusers 

would need to be optimized on a FDTD mesh slightly larger than 5 m x 10 m, with a mesh 

spacing of 1 mm. This was not computationally feasible. Instead, the domain size and 

resolution were varied depending on the application (see Table 2, Table 3 and Table 7). The 

resulting FDTD model can be used to accurately assess scattering—but only for surfaces 

that can be represented as a rigid wall on the finite difference mesh.  

 

4.1. A finite difference scheme with a Ricker wavelet source 

 

This section outlines the two-dimensional FDTD scheme used to simulate acoustic 

scattering. The Matlab implementation is given in Appendix A.    

 

 
Figure 19  Staggered pressure and particle velocity vectors in a FDTD mesh. 

(After Cox and D’Antonio [1]) 
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FDTD is a numerical method that sees widespread use in computational electrodynamics. 

The method has been adapted to acoustics based on the conservation of momentum and 

continuity equations. FDTD models these using central-difference approximations to the 

space and time partial derivatives.  

 

Central differences minimize the significance of higher order terms in the discretized 

partial derivatives, making the computation less prone to numerical error and therefore 

more robust. The sound pressure   and particle velocity   are formulated on staggered 

spatial grids in a Yee lattice (also known as a leapfrog scheme), resulting in an explicit time 

stepping scheme that avoids the need to solve simultaneous equations. 

 

Figure 19 illustrates how the pressure vector component in the Yee lattice is located 

midway between a pair of velocity vector components. The mesh for the particle velocity in 

the   plane is shifted by      with respect to the pressure mesh, and the mesh for the   

component of the velocity is shifted by     . Additionally, the particle velocity time meshes 

are shifted by      with respect to the pressure mesh.   

 

This work utilizes a 2D FDTD scheme as the groundwork for scattering prediction. The 

central finite difference approximations to the pressure and particle velocity are 

implemented using the following update formulations [1]: 

 

 

 

(4.1) 

 

 

 

(4.2) 

 

 

(4.3) 

 

where superscripts denote the time index and subscripts denote the spatial indices,     and 

   are the mesh spacing in the   and   directions,    is the time step between 

computations, and         
  is the bulk modulus of the medium having density   .  
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4.1.1. Numerical stability 

 

Numerical stability requires that the time step be small enough to describe acoustic wave 

propagation. This is enforced using the Courant criteria, where the Courant number,  , is 

defined in 2D as 

 

 

 

(4.4) 

 

Additionally, on a mesh with discretization step size   , the maximum frequency that can 

be accurately simulated is restricted by          [1]. The highest frequency of interest for 

predicting room acoustics is typically about 5,500 Hz (the upper end of the 5 kHz one-third 

octave band), calling for a mesh spacing of 6mm. In this work, mesh spacing was chosen to 

be 10 mm for low frequency design and 2.85 mm for high frequency design4, therefore the 

maximum frequencies that can be simulated are 3440 Hz and 12,070 Hz, respectively.  For 

these two discretization sizes, the Courant condition (Eq. (4.4)) required that the sampling 

frequency be no less than 48.7 kHz and 171 kHz, respectively. 

 

4.1.2. Representing a diffusing surface 

 

The diffusing surface was modeled as a perfectly rigid wall occupying desired coordinates 

on the mesh. At those points the particle velocity was set to zero for the duration of the 

simulation. Another approach is to use an impedance boundary condition that relates the 

pressure to the particle velocity normal to the surface. An acoustic impedance function can 

simulate geometries that do not snap directly to the mesh nodes; however, this may be 

problematic for complex surfaces as the time-domain acoustic impedance may not be a 

causal function [23].  

 

4.1.3. Excitation 

 

Three methods of pulsed excitation were tested on the FDTD domain: Gaussian pulses, 

Ricker wavelets and disk displacement initial conditions. In preliminary testing, the Ricker 

wavelet (also known as a Mexican hat wavelet) was found to offer the widest bandwidth 

                                                 

 

4 Mesh spacing was chosen based on diffuser geometry, discussed in Chapter 6. 
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without causing visible numerical dispersion artefacts on the mesh. Ricker wavelets are 

particularly useful because they do not introduce significant frequency components near 

DC. Gaussian pulses are acceptable; however, they contain the greatest energy at DC which 

can potentially introduce non-physical artefacts. For example, large-amplitude frequency 

components near DC might be resonant with the mesh.  

 

The Ricker wavelet is equivalent to the second derivative of the Gaussian function and has 

spectral content fixed by a single parameter, the central frequency      . The basic form of a 

Ricker wavelet is 

 

 

 

 

(4.5) 

This wavelet is not zero for    , therefore a transient can be expected at    . To reduce 

the transient caused by activating the wavelet a temporal delay,   , was applied. As    can 

be any desired amount it was set using trial and error, but for convenience it can be 

expressed as an integer multiple of 1/     . This results in a time shifted wavelet like those 

shown in Figure 20. The wavelet was implemented in Matlab by applying the following 

update to the pressure mesh at a point (xcor,ycor), while incrementing the time step  :  

 
p(xcor,ycor) = -sqrt(2)*pi*fcent*((sqrt(2)*pi*fcent*(n-t0)).^2 - 1) ...  

        *exp(-0.5*(sqrt(2)*pi*fcent*(n-t0)).^2);    

 

 

 
Figure 20  Ricker wavelets and their spectra centered on 250 Hz and 2,000 Hz. 

The wavelets have been time shifted to reduce transients at t = 0 (after Redondo      . [22]). 
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Figure 21  2D FDTD simulation of an N=17 stepped diffuser excited by a Ricker wavelet. 

 

 

4.1.4. Receiver Arc 

 

To obtain a polar representation of the scattered pressure, the response over the pressure 

mesh is recorded at many points on a semicircle. For a desired receiver radius  , the arc is 

approximated so that lattice points on the semicircle correspond to nodes on the FDTD 

mesh. This allows the array of sensors to be efficiently implemented, but the approximation 

must be done carefully so that sensors are evenly distributed. Figure 22 illustrates that 

with an arc radius of 250 grid steps, 180 sensors can be placed with nearly equal spacing. 

Higher accuracy is achieved when the radius is increased to 500 grid steps. The highest 

resolution simulations were those performed on fractalized diffusers, in which sensors were 

arranged on an arc with a radius of 1938 grid steps (corresponding to 5 m). The Matlab 

function arclattice.m was created to arrange sensors on an arc and is included in Appendix 

A. 

 

The pressure is read at each sensor for the duration of the simulation, yielding a collection 

of temporal response vectors (Figure 23). This data is then processed using the methods in 

Chapter 5  to reveal the quality of diffusion.  
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Figure 22  Simulation domain used for preliminary testing with 180 sensors over 180°. 

Left: a single period of an N=7 diffuser. Right: An array of N=7 asymmetric diffusers in the 

aperiodic modulation [1 0 1 1 0]. The excitation source is depicted as a red point. 

 

 

 

 

 
Figure 23  Near field temporal response to a Ricker wavelet source at normal incidence. 

Sensors are distributed on a ±90° receiver arc, such that the incident pulse is first received 

by the central sensor (at 0° from the normal), and the reflected response is first received by 

the outside sensors (located at ±90°). The surface is an N = 17 stepped diffuser. 
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4.1.5. Anechoic boundary conditions 

 

An anechoic environment was needed to enable scattering predictions with reasonable 

solution times. Without absorbing boundary conditions, propagating waves reflect off the 

boundaries of the mesh and interfere with ongoing data collection. Elimination of these 

reflected waves called for the use of perfectly matched layers (PMLs), which are regions of 

lossy medium that pad the interior of the boundaries. 

 

A PML applies attenuation gradually to minimize the significance of discretization errors. 

The attenuation factor is set to zero inside the integration area and increases near the 

boundaries according to the expression 

 

 

 

 

(4.6) 

When PMLs are necessary the elegance of FDTD is compromised. Consequently it was not 

viable to continue building a robust FDTD prediction model from scratch, because the focus 

of this work was to design diffusers using lean optimization. 

 

 

 

 

4.2. A simulation environment built with k-Wave for Matlab 

 

The complications of PML prompted the search for an existing Matlab implementation, and 

an excellent solution was found: k-Wave, a free Matlab toolbox for the time-domain 

simulation of acoustic wave fields [24]. k-Wave places a level of abstraction between the 

numerical implementation (a k-space pseudospectral method with a PML) and the 

simulated physical environment. Using k-Wave as the scaffolding for simulation, an 

environment has been built to evaluate acoustic scattering and visualize the process. This 

prediction model can be run as a function during optimization (in which case it will display 

an animation and return a single-valued broadband diffusion parameter), or as a script 

when detailed analysis needs to be performed.  Appendix B contains the Matlab code. 
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4.2.1. Adapting k-Wave to simulate scattering 

 

Adapting k-Wave to the scattering problem required special considerations.  To define a 

diffusing surface, a mask was created over part of the simulation domain with different 

material properties than air. k-Wave has a function to set the properties of a propagation 

medium, designed to be used for tissue realistic acoustics, ultrasound and photoacoustics. 

Realistically, the density of a solid object like a diffuser is much higher than that of air, and 

because the particles are closer together, sound propagates through the diffuser faster than 

it does through air.  If these properties are set literally, the Courant criteria (Eq. (4.4)) 

requires that the mesh spacing be tiny, and given the size of the domain (meters) the 

resulting simulation becomes computationally unfeasible.  Fortunately, propagation of 

sound inside the diffuser is of little concern for this work. The density was simply specified 

to be that of air throughout the domain, and to make the diffuser mask reflective the speed 

of sound at those points was set arbitrarily close to zero (1x10-9 m/s). This is not the same as 

setting the particle velocity to zero, as was done in Section 4.1; however, on a macro scale 

the resulting scattering was indistinguishable.  

 

The Ricker wavelet pulse was implemented in k-Wave by defining a custom time-varying 

source. Without full access to the k-Wave time series, specifying a suitable amplitude pulse 

required scaling the Ricker expression. It proved more reliable to produce a short duration 

pulsed excitation by setting a point displacement initial condition on the mesh. This was 

the excitation method of choice when optimizing diffusers.  

 

 

 

Figure 24  Near field scattering from a randomly generated stepped diffuser.  

The excitation pulse was created using a point displacement initial condition. 
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4.2.2. Flattening the spectral envelope 

 

At a given sensor, the sound pressure level (SPL) spectrum ( )
p

L f can be obtained from the 

fast Fourier transform (FFT) of the pressure ( )p t : 

 

 

 

where 6

0
20 10P -= ´  Pa (RMS) is the threshold of human hearing. ( )p t is a time-varying 

quantity with positive and negative values, thus the pressure spectrum ( )P f  is divided by 

   to get the quadratic mean (RMS value).   

 

 

Regardless of the excitation method, the bandwidth of the pulse is limited by the mesh 

spacing and the spectrum is not flat. Consequently the temporal response (Figure 25) is not 

identical to the impulse response, and the frequency spectrum of the scattered pressure 

does not equal the frequency response. While optimization can function without knowing 

the true frequency response5, it is more intuitive to check that the model works when the 

visual representation of an even response matches the human expectation of ‘even looking’. 

 

A rough correction of the response spectrum was applied to assist visualization. First, an 

inverse envelope was created from the SPL spectrum of a reference incident pulse, , ( )p refL f . 

To isolate the spectral envelope from undesired local fluctuations, pseudo-Gaussian 

smoothing was applied to the reference pulse spectrum. This consisted of three passes of a 

moving average filter with a width of 10 FFT bins. The reference was also normalized to 

have a maximum magnitude of unity. The inverse envelope, ( )H f , is simply the inverse of 

the smoothed normalized pulsed spectrum:  

 

 

 

                                                 

 

5 Diffusers are evaluated using the statistical criteria in Chapter 5. 
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For any sensor   on the receiver arc, the SPL spectrum of the scattered response ( ),pL fq  

can be approximately flattened through multiplication with the inverse envelope: 

 

( ) ( )( ), ,p pL H f Lf fq q= ×  

 

This deconvolution yields an approximate frequency response suitable for visualization ( 

Figure 26), but not for critical analysis. The deconvolution assumes that propagation losses 

are equal at all frequencies, which is false. Sound propagating in air experiences 

atmospheric effects that causes high frequencies to be absorbed more than low. The amount 

of absorption depends on the temperature and humidity, which the numerical scheme can 

model by adjusting the sound speed and density in the medium. Consequently the high 

frequencies are undercompensated by the inverse envelope. A more suitable reference 

spectrum might be created from a pulse that has propagated the same distance as the 

reflected wave front, so that each will have experienced similar attenuation upon reaching 

the sensor. Another concern is that the smoothed reference pulse does not perfectly align 

with its original spectral envelope—and when the original is multiplied with the inverse 

envelope, a small amount of amplitude distortion appears in the flattened spectrum.   A less 

noise-prone method of flattening the spectrum is Wiener deconvolution, which finds an 

optimal compromise between inverse filtering and noise smoothing. 

 

 

 
Figure 25  Temporal response and spectrum of a diffuser measured at the central sensor.  
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Figure 26  Left: Reference pulse spectrum and response spectrum.  

Top right: inverse envelope. Bottom right: response spectrum flattened by inverse envelope.  
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5. MEASURES OF DIFFUSION QUALITY 

 

5.1. A diffusion parameter based on the standard error 

   

For optimization to be viable the scattering pressure distribution needed to be reduced into 

a single merit of diffusion. Cox developed and tested several diffusion parameters based on 

the standard errors for all frequencies, source locations and receiver arcs [11,14]. Minor 

anomalies arose when the standard error was calculated via intensities, therefore a revised 

diffusion parameter evaluates the standard error using sound pressure levels: [14] 
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 (5.1) 

 

where   is the number of reciever angles in 180° and ( , )pL r   is the mean value calculated 

via intensities. ( , , )s r f r is the standard error for each receiver arc radius  , source position 

   and frequency  . This formula assumes that the sound pressure level is viewed and 

heard on a roughly linear perceptual scale. According to equal loudness contours, the 

assumption is most valid for high sound pressure levels (>80 dB) between 300 Hz and 1000 

Hz.  

 

To ensure that the standard error is dominated by the general envelope rather than local 

fluctuations, spatial averaging was applied to the response prior to computing Eq. (5.1). 

This was accomplished using a sliding average filter with a width equal to the number of 

sensors6 in 10°. An alternative approach is to smooth the frequency spectrum (e.g., by 

averaging in one-third-octave bands). When using a time domain model the FFT can be 

readily computed from the temporal response, therefore smoothing the spectrum is a viable 

alternative to spatial averaging. 

 

                                                 

 

6 For a receiver radius of 250 grid steps, a dense sensor mask was used with 39 sensors per 10°. For 

a receiver radius of 500 grid steps it was possible to create a sparse sensor mask with sensors spaced 

by roughly 1°. 
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The mean diffusion   can be obtained by averaging the standard error for all frequencies, 

source locations and receiver arcs. However, there may be cases where poor diffusion at a 

particular frequency or angle is compensated for by excellent diffusion at another frequency 

or angle. To penalize these cases, a standard error of the standard errors is added to the 

mean. The result is a single-valued broad-band diffusion parameter,  : 
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where m is the total number of frequencies, incident angle and receiver arcs, each having a 

standard error  , ,j s r f r  and a weighting function  , ,j sw r fr  [14]. The weighting 

functions may be used to assign relative importance to certain source positions, frequency 

ranges or receiver arcs.  

 

In this investigation, optimization was performed for a single receiver radius and source 

position, with the weighting functions set to unity.  Therefore, Eq. (5.2) can be simplified 

and represented in terms of n frequencies [11]: 
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 (5.3) 

 

 

5.2. The autocorrelation diffusion coefficient 

 

There are various statistical approaches to calculating a diffusion coefficient; however, 

because these methods involve data reduction they are prone to inaccuracies [1]. The 

autocorrelation diffuser coefficient has proven to be the most reliable method to compare 

diffusion between devices that were tested under different conditions.  
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While autocorrelation is typically used to reveal self-similarity between a signal and a 

delayed version of itself, it is used here to evaluate the spatial similarity of the scattered 

energy. High values in the spatial autocorrelation function indicate that a surface scatters 

sound uniformly to all receivers; low values indicate that a surface is concentrating 

reflected energy in one direction [1].  The autocorrelation diffusion coefficient for a fixed 

source position was implemented as 
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  (5.4) 

 

where    are the set of sound pressure levels arriving at each receiver (sensor) in decibels, n 

is the number of receivers arranged on a semicircle, and   is the angle of incidence. The 

above equation requires an equal angular spacing between each receiver. This was 

approximated by using a radius of 250+ grid steps, with each receiver location rounded to a 

point on the grid that approximately intersects a semicircle.  

 

 

Eq. (5.4) was evaluated in one-third octave bandwidths which results in a smoothed 

coefficient characterized by the spectral envelope7. 

 

 

At low frequencies the surface acts like a point source due to the increased prominence of 

edge scattering, resulting in a diffusion coefficient that increase as the frequency 

approaches zero.  As this behavior can cause confusion, a normalized diffusion coefficient 

can be used to remove it. The normalized diffusion coefficient was calculated by first 

applying Eq. (5.4) to the test surface, yielding   , and to a reference flat surface of equal 

size, yielding     .  From    and      the normalized diffusion coefficient was computed as 
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7 In Chapter 9 the diffusion coefficient spectra is shown for several surfaces. 
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6. THE PRELIMINARY DESIGN OF STEPPED DIFFUSERS 

 

Meaningful constraints were needed to help formulate the optimization problem. Given a 

desired specification—in this case the operational bandwidth and the number of wells—the 

design equations for Schroeder diffusers were used to determine the viable range of well 

depths and widths. 

 

Application of this design theory requires that plane wave propagation (propagation in one 

dimension) dominates in the wells. Based on this assumption, the upper frequency of 

diffusion is conveniently related to the well width: 

 

 min

max2 2

c
w

f


   (6.1) 

 

 

where   is the well width,      is the shortest wavelength to avoid cross-modes in the wells, 

and      is the upper limit of dispersion based on this basic design theory. This limit is used 

only as a guideline for preliminary design, because in practice diffusion will occur above 

     [1].  This is especially true for stepped diffusers, as the plane wave propagation theory 

is greatly compromised by removing the fins between wells.  

 

The quadratic residue sequence was used to estimate a practical range of depths based on 

the desired design frequency. First, the sequence numbers for a QRD were calculated using 

 

 2 modulons n N  (6.2) 

 

 

where    is the sequence number for the     well and N is a prime number. For an N = 7 

QRD,    = {0, 1, 4, 2, 2, 4, 1}. The objective was to design an optimized stepped diffuser, not 

a QRD; therefore, only the maximum and minimum sequence numbers were used. Well 

depths for a Schroeder diffuser are determined from the sequence numbers using 
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  (6.3) 

 

where    is the design wavelength. It follows that a Schroeder diffuser has well depth that 

vary between 0 and     . These limits were exploited as constraints for the optimization 

problem. While the maximum depth      is flexible, the depth of the diffuser was limited to 
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an accepted standard for the sake of aesthetics and production feasibility. Additionally, this 

depth constraint speeds up the optimization. 

 

The design frequency,   , was taken to be the lower limit of controlled diffusion for a 

Schroeder diffuser:  

 

 max
0

max2

s c
f

N d
  (6.4) 

 

 

Quadratic residue diffusers are designed to have optimum diffusion at integer multiples of 

  ; however, the bandwidth is limited because the QRD behaves like a plane reflector at 

frequencies      where          [1]. At these critical frequencies, all well depths are 

integer multiples of half the wavelength, thus all wells re-radiate in phase.  It follows that 

to design a QRD,   and   must be chosen so that      is less than the first critical 

frequency,    . This condition can be written as a constraint on  : 

 

 
02

c
N

wf
  (6.5) 

 

6.1. Limitations and considerations for phase grating surfaces 

 

A practical implication of Eq. (6.5) is that for a given design frequency, the well width can 

only be reduced if   is increased—but doing so increases the complexity of the optimization 

problem and the geometry. Eq. (6.5) also implies that for a given design frequency there is a 

minimum repeat width for one period of the diffuser (  ). If made too narrow,    will be 

governed by the period width instead of by     .  

 

The design theory relies on grating lobes generated by periodicity in a surface, thus a 

Schroeder diffuser must be periodic to exhibit ‘optimal’ dispersion [1]. Conversely, too many 

periods cause narrow grating lobes with large nulls in between, resulting in uneven 

scattering. The best design based purely on Schroeder’s theory will consist of an array of 

about five periods [1]. An alternative is to use modulation schemes to form an array, which 

is a general technique that is not restricted to Schroeder diffusers.   

 

If the diffuser wells are too narrow the viscous boundary layer becomes significant, causing 

the absorption of the device to increase. The minimum practical well width to avoid this is 

about 2.5 cm, with 5 cm being a more typical choice [1]. For narrow-welled designs, it is 

expected that absorption will be less severe for the typical stepped diffuser. Stepped 
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diffusers lack dividers between wells, and thus present less bounding surface to a plane 

wave at normal incidence.   

 

The low frequency efficiency depends on the ratio of        . For Schroeder diffusers, the 

choice of prime number is limited by low frequency performance, critical frequencies and 

manufacturing considerations. For stepped diffuser optimization, the choice of   is also 

governed by computational constraints. In this case   corresponds to the number of wells 

and is not required to be a prime number. 

 

6.2. Geometric framework for stepped diffusers 

 

Preliminary geometries to optimize were formulated using Eq. (6.1) - (6.5). Geometries are 

named according to their scale:  

 Module A-LF refers to a single period of a structure to optimize with a low design 

frequency (for these purposes,    < 800 Hz is considered LF). 

 Array A-LF refers to multiple periods of Module A-LF in a modulated array. 

 Module A-HF refers to the second stage of a fractal based on Module A-LF. 

 A first order structure is any module or array with a LF design frequency. 

 A fractal refers to a nested structure with both a LF and HF design frequency. 

 

The choices were narrowed as additional practical constraints were introduced: 

 

1. Each discrete unit length or width must be an integer multiple of the simulation 

grid step size; otherwise, the geometry will be rounded to the nearest point on the 

grid. Physical dimensions were chosen carefully so that the first generation module 

and a second generation fractal may be placed on a common grid and simulated 

within a reasonable time frame.  

2. The number of wells   must be sufficiently small to allow fractal formations in a 

small form factor. This will enable a simple, compact diffuser with a wide 

bandwidth.    
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Table 2  Preliminary Calculations for Phase Grating Diffusers8 
Identifier for 

single period 

of geometry 

No. 

wells 

Well 

width 

(mm) 

Max 

depth 

(mm) 

Round to 

grid step 

(mm) 

Design 

freq. 

(Hz) 

Max  

freq. 

(Hz) 

Module 

width 

(mm) 

Total 

depth 

(mm) 

Total  

bandwidth 

(Hz) 

Module A-LF 

Base Struct. 

7 60 160 

 

10 614 2867 420  

 

205.6 

 

 

~19450  

Module A-HF 

2nd Stg. of 

Fractal 

 

7 

 

8.57 

 

45.6 

 

2.85 

 

2155 

 

20067 

 

60 

Module B-LF 

Base Struct. 

7 

 

 

60 140 

 

10 702 

 

2867 420  

 

180 

 

 

~19370 

Module B-HF 

2nd Stg. of 

Fractal 

 

7 

 

8.57 

 

40 

 

2.85 

 

2457 

 

20067 

 

60 

  

 

Module C-LF 

Base Struct. 

 

7 

 

70 

 

200 

 

 

10 

 

491 

 

 

2457 

 

490 

 

 

240 

 

 

 

~16700 

Module C-HF 

2nd Stg. of 

Fractal 

 

7 

 

10 

 

40 

 

2 

 

2457 

 

17200 

 

70 

 

Module B-LF 

Base Struct. 
 

 

7 

 

140 

 

140 

 

10 

 

702 

 

1229 

 

980 

 

 

 

220 

 

 

 

~7850 Module B-HF 

2nd Stg. of 

Fractal 

 

7 

 

20 

 

70 

 

5 

 

1229 

 

8600 

 

140 

 

 

 

 

  

                                                 

 

8 This work focussed on the framework shown in bold. The other frameworks were used for 

preliminary testing.  
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7. OPTIMIZATION  

Optimization was performed using five modules in an array with aperiodic modulation. As 

there is a trade-off between the pitfalls of periodicity (nulls in the polar response) and the 

benefits (symmetrical scattering), the optimization problem has been set up to determine 

whether the best array is periodic with a symmetrical base shape or aperiodic with an 

asymmetrical base shape. The aperiodic modulation {1 0 1 1 0} was used where ‘1’ denotes 

the base shape and ‘0’ denotes a flipped version. For symmetrical modules the array 

naturally becomes periodic with modulation {1 1 1 1 1}. If the best base shape is known to 

be symmetrical, the optimization can be greatly sped up by exploiting symmetry to reduce 

the number of variables.  

 

With only 16 discrete well depths to choose from the optimization problem called for mixed 

integer programming, therefore downhill simplex and gradient descent methods were not 

suitable. The mixed integer programming problem is non-deterministic polynomial-time 

hard (NP-hard), which implies that there is no efficient algorithm known to solve it. In this 

work the objective function is the (nonlinear) scattering prediction model, while the solution 

space is the set of all possible well depth combinations. N = 7 yields a solution space of     

= 268,435,456 candidate solutions; consequently, converging to a solution within reasonable 

time required a minimization algorithm that could be tuned to this particular nonlinear, 

mixed integer problem. The integer genetic algorithm (GA) was the natural choice.  

 

7.1. Genetic algorithms 

 

Genetic algorithms are based on natural selection. They modify a population of ‘individuals’ 

(solutions) through multiple generations. To create each new generation the algorithm 

randomly selects individuals from the current population to breed, producing the children 

for the next generation. Given multiple generations the population evolves toward an 

optimal solution. Figure 27 describes the optimization processes for a genetic algorithm 

adapted to mixed integer programming. 

 

Three operators are used to create the next generation from the current population at each 

step: 

 

 Selection chooses which parents will survive and contribute to the next generation. 

 Crossover represents mating; it derives children from parents. 

 Mutation applies random modifications to individual parents to create children. 
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Genetic algorithms are intrinsically parallel: they have multiple offspring that can search 

the feasible region (design space) in multiple directions simultaneously, such that a feasible 

region can be explored with a reasonable chance of finding the global optimum. If a dead 

end is found, genetic algorithms can eliminate it and continue exploring. In contrast, most 

minimization algorithms are serial and only traverse the design space in one direction at a 

time, stopping when they find an apparent solution or hit a dead end.  

 

 

Figure 27  A genetic algorithms for integer sequence optimization. 

(Modified after Cox and D’Antonio [1]) 

 

 

7.2. Optimization using an integer genetic algorithm 

 

Optimization was performed across a range of frequencies that roughly span the 10dB-

bandwidth of the excitation pulse. This will be called the diffusion band. 12 discrete 

frequencies were chosen for optimization, distributed quasi-randomly in the diffusion band. 

The response spectrum was characterized by a 4096 point FFT, and the optimization 

frequencies were the FFT bins centered on {102, 250, 449, 574, 700, 824, 949, 1102, 1250, 

1450, 1700 and 1950 Hz}. This sparse set of FFT bins was chosen in an effort to clearly 

define the optimization objective, aid in visualizing progress and perhaps speed up 
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convergence9. When the goal is to optimize for twelve specific frequencies (rather than all 

frequencies), the disparity between good solutions and average solutions is higher and 

results can be compared more meaningfully. Moreover, Cox found that optimization at 

seven frequencies [11] was sufficient to achieve good dispersion over the entire bandwidth.  

 

To emphasize the importance of the lower-mid frequencies, the range 400-1250 Hz received 

the highest density of optimization frequencies. Another option is to optimize across all FFT 

bins in the diffusion band, assigning relative weights to each bin when solving Eq. (5.2). 

 

7.2.1. Tuning and convergence 

 

Tuning genetic algorithms to find an appropriate population size and mutation rate was 

time consuming. On a 512 x 512 simulation mesh, each scattering prediction took about 2 

minutes on an i7 2600K desktop processor. A typical optimization run took about 40 hours 

during which the scattering was evaluated 1200 times with the goal of minimizing the 

single-valued broadband diffusion parameter  . Given that the solution space contained 

over 260 million candidates, the algorithm was considered to be well tuned if it made 

process toward an apparent local minimum while maintaining a diverse population.  

 

When the population size was too small (e.g., 20) the genetic pool would quickly become 

dominated by a few individuals and the algorithm would converge prematurely to a local 

minima—typically resulting in a poor quality ‘solution’. With a large population size the 

solution space was explored more thoroughly; however, progress toward a minima was 

slower. A suitable balance was found by setting the population size to 40, resulting in 30 

generations per 1200 function evaluations (Figure 28). For the integer GA, a thorough 

search of the solution space would require a larger population size and number of 

generations, say, 100 and 300 respectively. This is possible, but the optimization would take 

over a month with the given set up. 

 

Test runs provided insight on what additional constraints might assist convergence. In 

early testing all well depths were constrained to integer multiples of the mesh spacing, 

where      denotes the maximum integer value (typically 16). The two outside well depths 

were later constrained to integers between        and     . This prevents the algorithm 

from searching undesired forms that were expected to exhibit particularly poor scattering 

                                                 

 

9 It was hypothesized that convergence might be fastest for a problem with narrow criteria; 

however, this was not confirmed.  
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and a deep profile. One intention was to avoid concave forms which have a focussing rather 

than a dispersing effect. 

 

Table 3  Optimization Frameworks 
Framework 

name 

No. 

wells 

Well 

width 

(mm) 

No. 

depths 

Minimization 

algorithm 

parameters 

Simulation 

parameters 

Sensors Frequencies 

optimized 

Preliminary 

Tuning 

Setup  

7+ 

(solo 

module) 

 

60 

 

20 

Meta-heuristic  

GA, DE, PSO 10   

Population: 20+ 

Grid xDim: 256 

Grid zDim: 256 

Grid step: 10 mm 

Source: 2.2 m, 0° 

Radius: 1.25 m 

Angle: ±85° 

Quantity: 335 

 

All FFT bins 

between 

100-1950 Hz 

 

Design 

Setup 

Op250M 

7 

(solo 

module) 

 

60 

 

14 

Integer GA 

Population: 40 

Tol Function: 

1e-3 

Grid xDim: 512 

Grid zDim: 512 

Grid step: 10 mm 

Source: 4.5 m, 0° 

Radius: 2.5 m 

Angle: ±85° 

Quantity: 667 

 

12 FFT bins 

between 

100-1950 Hz 

 

Design 

Setup 

Op250 

7 

(x5 in 

array 

[10110]) 

 

60 

 

16 

Integer GA 

Population: 40 

Tol Function: 

1e-4 

Grid xDim: 512 

Grid zDim: 512 

Grid step: 10 mm 

Source: 4.5 m, 0° 

Radius: 2.5 m 

Angle: ±85° 

Quantity: 667 

 

12 FFT bins 

between 

100-1950 Hz 

 

 

 

7.3. Optimization results 

 

Optimization results were collected over three weeks, which involved numerous runs of the 

integer GA using design frameworks Op250M and Op250 (frameworks are outlined in 

Table 3). The default optimization run relied on about 1200 scattering predictions; however, 

early runs using framework Op250M were limited to 800 scattering predictions. Diffusers 

were optimized at a receiver radius of 2.5 m using a pulsed excitation at 4.5 m and normal 

incidence. The best performing shapes were also tested using a full-scale scattering 

simulation (see Chapter 9) to ensure excellent scattering at a radius of 5 m with a source at 

10 m 11. Due to the large number of runs, only the best results are presented in Table 4. 

 

                                                 

 
10 Before utilizing the integer GA, tuning was performed on a meta-heuristic global optimizer that 

combines the GA, differential evolution (DE) and particle swarm optimization (PSO) to increase the 

likelihood of finding the global optimum [34]. This optimizer, when modified for use with integers, 

had comparable performance to the integer genetic algorithm. While the meta-heuristic optimizer is 

expected to outperform the GA for problems with larger populations [34], the integer GA was 

preferred for this work due to its relative simplicity.  
 

11 In the literature, diffusers performance is typically assessed at a receiver radius of 5 m with a 

source at 10 m [1]. 
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The best result found using array-based optimization is the symmetrical base shape named 

A1-LF, having well depths of {13 9 8 10 8 9 13} cm. Figure 28 shows the progress toward 

this optima, where the goal was to minimize the penalty value   . The mean penalty for the 

population did not converge to the best penalty value, indicating that the integer GA 

maintained a diverse population throughout the 30 generations. While true convergence 

was not achieved, Figure 28 shows significant minimization progress followed by a plateau 

in both the best value and mean value of   . This was the preferred method of finding a 

solution using only 1200 scattering evaluations. A better solution might be found by letting 

the optimization process run much longer until it converges.  

 

Table 4  Optimization Results12,13 
Result 

name 

Framework 

used to 

obtain result 

No. 

wells 

Well 

width 

(cm) 

Effective 

array 

Depths and 

resulting heights14 

(cm) 

Diffusion 

param. 

   

Significance of this result 

Design Setup 

Op250 

(integer GA) 

 

7 

 

6 

 

1 1 1 1 1 

 

13 9 8 10 8 9 13 

 
0 4 5 3 5 4 0 

 

 

9.7553 

(in array) 

 

 

Best symmetrical base shape 

found via optimization in the 

array [1 0 1 1 0]. 

Design Setup 

Op250 

(integer GA) 

 

7 

 

6 

 

1 0 1 1 0 

 

13 12 7 4 6 11 12 

 
0 1 6 9 7 2 1 

 

9.7707 

(in array) 

Best asymmetrical base shape 

found via optimization in the 

array [1 0 1 1 0]. 

Design Setup 

Op250M 

(integer GA) 

 

 

7 

 

6 

 

1 (solo) 

 

 

10 6 3 4 3 5 10 

 
0 4 7 6 7 4 0 

 

9.4861 

(solo) 

Of the top ten base shapes 

found via solo optimization (no 

array), this shape maintained the 

best performance when later 

placed in the array 1 0 1 1 0.  

Analysis 

Setup15 

Sim250  

 

 

7 

 

6 

 

1 0 1 1 0 

 

10 6 3 4 2 5 9 

 
0 4 7 6 8 5 1 

 

N/A16 

The above shape was mutated 

into several asymmetric shapes 

via input from a human 

designer. Each candidate was 

tested in the array 1 0 1 1 0, 

and the winner was selected.   

                                                 

 
12 Depth sequences shown in bold represent the best designs, particularly when converted to fractal 

formations. These designs are fractalized in Chapter 8 and further analyzed in Chapter 9. 

 
13 The diffusion parameter    depends on the scattering prediction model set up, and can only be used 

to compare results that have an identical simulation set up. Side-by-side test results and a universal 

comparison using the autocorrelation diffusion coefficient are given in Chapter 9. 
 

14 To minimize the depth, heights are offset such that lowest step is flush with the diffuser base. 
 

15 See Table 7 for details on the FDTD simulation framework used for full-scale analysis. 
 

16 This result was obtained using the full scale FDTD simulation framework Sim1 from Table 7, 

therefore the diffusion parameter is not directly comparable to the others in Table 4. 
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Figure 28  Minimization progress after 1200 scattering predictions for 5 modules 

in an array with modulation [1 0 1 1 0]. The goal was to minimize the penalty value,   . 

 

 

Figure 29  Near field simulation of the optimized array with base shape A1-LF. 

 

The solution A1-LF is of special significance because it has a much shallower form factor 

than previously optimized stepped diffusers. An N=7 stepped diffuser optimized by Cox had 

well depths spanning a 15 cm range [11]; A1-LF has an operational depth of 5 cm. The low 

value of   , computed using Eq. (5.3), can be visually understood by examining Figure 30. 

The standard error at a 2.5 m receiver radius for a source at 4.5 m ∠  ° is denoted as 

              , or shorthand as     . Figure 30 shows that the standard error, when scaled 

with the inverse envelope, has a relatively flat spectrum. Additionally, the local 

fluctuations in      are not severe, therefore the variance in      is acceptably low. 

Moreover the mean value of      is small compared with other diffusers. Since the mean 

and variance of      are both small, the single-value broadband diffusion parameter    is 

small. 
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It follows that because    is small, the scattered response is relatively uniform throughout 

the diffusion band. Figure 31 confirms this; however, because the A1-LF array is periodic 

grating lobes contribute peaks and nulls to the scattered polar distribution. This effect is 

further analyzed in Chapter 9.  

 

 

Figure 30  Standard error                for an array of optimized base shapes A1-LF.  

  has been scaled by the inverse envelope, and is shown at each FFT bin (red line). 

Optimization frequencies are indicated with an ‘o’. 

 

 

 

Figure 31  Scattered polar distribution for the optimized array with base shape A1-LF. 

The scattering is shown at one optimization frequency (1250 Hz) and five others. Results 

were obtained via k-Wave prediction with a 2.5 m receiver radius and a source at 4.5 m, 0°.   
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8. BANDWIDTH EXTENSION VIA FRACTALIZATION 

 

Fractal formations have been used as an elegant way to extend the bandwidth of the 

optimized diffusers.  This required a higher resolution simulation mesh, which in turn 

expanded the bandwidth of the excitation pulse (Figure 35). Based on the pulse spectrum, 

the diffusion band spans 100-5100 Hz. Diffusion throughout the band is assessed in 

Chapter 9. 

 

The top performing base shapes have been converted to fractal form according to the 

specifications in Table 5. In addition, a fractal formation was created from a stepped 

diffuser that was optimized by Cox [11].  This diffuser from the literature will be named 

L95. L95 was not precisely reproduced on the limited-resolution mesh; therefore, 

quantitative performance comparisons with L95 are avoided. L95 has been useful as an 

intuitive reference when comparing animated time domain simulations.  Here, it is simply 

a geometric reference. 

 

Table 5  Framework for Designing Fractal Stepped Diffusers 
Type of geometry No. 

wells 

Well width 

(mm) 

Round to grid 

step (mm) 

Max  freq. 

(Hz) 

Module width 

(mm) 

Base Shape 7 60 10 2867 420 

2nd Stage of Fractal 7 8.57 2.85 20067 60 

 

Table 6  Fractal Formations 
Fractal 

name 

Base  

shape 

Base shape depths and  

heights17 (mm) 

2nd stg step 

heights (mm) 

HF dsgn 

freq. (Hz)18 

Base shape 

depth (mm)19 

Tot. depth 

(mm) 

 

A1-

Frac 

 

 

A1-LF 

 

130 90 80 100 80 90 130 

 
0 40 50 30 50 40 0 

 

0  11.4  14.25  8.55  

14.25  11.4  0 

 

6897 

 

60 

 

74.25 

 

 

B2- 

Frac 
B2-LF 

 

100 60 30 40 20 50 90 

 
0 40 70 60 80 50 10 

 

0  11.4  19.95  17.1  

22.8  14.25  2.85 

 

4311 

 

90 

 

112.80 

 

L95- 

Frac 

 

L95 

[11] 

 

168 20 55 48 55 20 168 

 
0 148 113 120 113 148 0 

 

0 42.75 31.35 34.2 

31.35 42.75 0 

 

2299 
 

158 
 

200.75 

 

                                                 

 
17 To minimize the depth, heights are offset such that lowest step is flush with the diffuser base. 
 

18 The resulting ‘design frequency’ for the second stage of the fractal has been calculated using Eq. 

(6.4). This quantity was not used in design; it is simply a predictor of gaps in the diffusion spectra. 
 

19 The base shape depth includes a 10 mm deep base to enable mounting on a wall or ceiling. 
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Figure 32  Three arrays of N = 7 base shapes with array modulation {1 0 1 1 0}. 

Base shapes A1-LF (top), B2-LD (middle) and L95 (bottom). L95 is a close approximation of a 

stepped diffuser optimized by Cox [11].  

 

 

 
Figure 33  Three arrays of N = 7 second order fractals with array modulation {1 0 1 1 0}. 

Fractal formations A1-Frac (top), B2-Frac (middle) and L95-Frac (bottom).  

 

 

The geometry of each fractal reveals whether or not the design is appropriate for practical 

use. L95 is clearly not suitable as a base shape for a fractal. It looks particularly jagged 

because the fractal framework with a 2.85 mm grid step (designed in Chapter 6) creates an 

elongated second stage. The framework has been designed to facilitate time domain 

simulation—not to preserve the height-to-width ratio of the base shape. The resulting 

formation, L95-Frac, would protrude 200 mm out of the wall, exposing long barbs that could 
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seriously injure a person upon collision. Additionally, the deep, narrow wells increase the 

significance of the viscous boundary layer, making the fractal subject to higher absorption 

at high frequencies. Conversely, it is the depth of these wells that gives L95-Frac a suitable 

HF design frequency (2299 Hz), “theoretically” suggesting a smooth transition between the 

LF and HF diffusion bands (Chapter 9 refutes this). The other fractal diffusers are safer, 

lower profile and easier to manufacture; however, as they have a high HF design frequency 

(Table 6) they may introduce gaps between the LF and HF diffusion bands. 

 

 

Figure 34  Temporal response and spectrum of A1-Frac, measured at the central sensor. 

 

 

 
Figure 35  Left: Reference pulse spectrum and response spectrum for A1-Frac.  

Top right: inverse envelope. Bottom right: response spectrum flattened by inverse envelope.  
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9. SIMULATION AND ANALYSIS OF THE DESIGNS 

 

A compact simulation domain with a receiver radius of 2.5 m was used during optimization. 

This was based on the assumption that the diffuser would typically be used in a small-to-

medium sized recording studio control room. However, Eq. (5.1) (used to calculate   ) 

requires that the receiver radius is significantly larger than the diffuser width [14].  

 

In the literature diffusion is typically measured at a receiver radius of 5 m with an 

excitation source at 10 m. This is the setup called for by the diffusion coefficient standard, 

AES-4id-2001 [25]. For real-world measurement, AES-4id recommends 36 microphones 

spaced 5° apart over a ±90° arc. For predictions using a BEM, Cox [14] used 54 sensors per 

receiver arc, distributed over ±85°. 

 

Table 7  Simulation Frameworks for Full-Scale Analysis 
Framework 

Name 

FDTD mesh 

parameters 

Excitation 

Pulse 

Sensors20 Frequencies 

tested 

Solution time using 

i7 2600K processor 

Sim500 

based on 

AES-4id-

2001

 

xDim: 1100 

zDim: 1024 

dx,dz: 10mm 

 

 

Distance: 10 m 

Angle: 0° 

Magnitude: 1 

Radius:             5 m 

AngleA:            ±85° 

NumSensorsA:  1337 

AngleB:            ±90° 

NumSensorsB:  180 

 

All FFT bins 

between 

100-1950 Hz 

 

 

20 min 

SimF250 

Fractal forms 

near field 

testing 

 

xDim: 1796 

zDim: 1796 

dx,dz: 2.85mm 

 

 

Distance: 4.5 m 

Angle: 0° 

Magnitude: 1 

Radius:             2.5 m 

AngleA:            ±85° 

NumSensorsA:  2343 

AngleB:            ±90° 

NumSensorsB:  180 

 

All FFT bins 

between 

100-5100 Hz 

 

 

2 hr 45 min 

SimF500 

Fractal forms 

analysis 

based on 

AES-4id  

 

xDim: 4098 

zDim: 4098 

dx,dz: 2.85mm 

 

 

Distance: 10 m 

Angle: 0° 

Magnitude: 1 

Radius:             5 m 

AngleA:            ±85° 

NumSensorsA:  4685 

AngleB:            ±90° 

NumSensorsB:  180 

 

All FFT bins 

between 

100-5100 Hz 

 

 

22 hr 

 

 

In this work a 10 m x 11 m domain has been used to analyze the performance of the most 

promising designs. The new simulation frameworks, Sim500 and SimF500 (Table 7), are 

based on AES-4id-2001 [25]. Sensors on the simulation mesh cost next to nothing, therefore 

at least 180 receivers were used for all simulations. However, a side effect of fitting the 

receiver arc to a rectangular grid is that as more sensors are added, they become less evenly 

spaced. To ensure uniform spacing, only 180 sensors were used when measuring the 

                                                 

 
20 For generating polar plots, the sensor arc consisted of NumSensorsA receivers over the angular 

range AngleA. For computing the autocorrelation diffusion coefficient, NumSensorsB evenly spaced 

receivers were used over the angular range AngleB. 
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autocorrelation diffusion coefficient. In contrast, the polar plots were produced using the 

detailed scattered response captured from a dense array of sensors.   

 

 

 
Figure 36  Full scale domain used to simulate the scattering from fractal diffusers. 

 

 
Figure 37  Pressure received at each sensor during simulation of the A1-Frac array. 
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9.1. Feedback from the specular zone 

 

Figure 38 shows the scattering from a plane reflector the same width as the diffuser array. 

When the receiver radius is 5 m, geometric reflection is received between ±15°. This is the 

specular zone. As the receiver arc shrinks, the specular zone widens, and Eq. (5.1) becomes 

less valid as a means to measure the standard error, ( , , )s r f r . For large surfaces (e.g., a 

wall) the specular zone can be as much as ±90°, and a different diffusion parameter is 

necessary [14]. AES-4id-2001 recommends that 80 percent of receivers are outside the 

specular zone [25,1].  

 

A good polar response can be recognized by understanding that a diffuser should disperse 

energy from the specular zone to other positions. When compared to diffusers, the plane 

reflector has a poor polar response on the Sim500 domain. This suggests that Eq. (5.1) is 

valid at the 5 m receiver radius: its use can be justified because the ±15° specular zone is 

small compared to the ±85° receiver arc. Specifically, 82.4 percent of receivers are outside 

the specular zone, which complies with AES-4id-2001. Finally, this knowledge can be used 

as feedback to assess the design method: If diffusers tested at a 2.5 m receiver radius retain 

their relative performance ranking at the 5 m radius, then it supports the case that 

 

1. Eq. (5.1) was valid during optimization.   

2. Diffusion at a 2.5 m receiver radius may function as a rough predictor of 

performance at the 5 m radius. 

 

The results in Table 4 and Table 8 are consistent with these arguments. Likewise, all other 

diffusers that were compared retained their relative performance ranking at the 2.5 m and 

5 m radius. While the results support the above arguments, the sample size was too small 

to confirm a strong trend. 

 

 

 
Figure 38  Polar response at 5 m from a reflector the same width as the diffuser array. 
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9.2. Performance results 

 

Table 8 compares the performance of selected diffusers that were tested using a 5 m 

receiver radius. The best diffuser should have the smallest single-value broadband diffusion 

parameter,   . This is the same parameter that optimization sought to minimize at a 2.5 m 

receiver radius.  The mean autocorrelation diffusion coefficient for a 0° incident source is 

denoted   
̅̅ ̅. A good diffuser should have a larger value for   

̅̅ ̅.; however, this is not a reliable 

metric. Unlike   ,   
̅̅ ̅ pays no attention to the evenness of the diffusion spectrum (this will 

be shown shortly). 

 

 

Table 8  Performance of Diffusers at a Receiver Radius of 5m21 
Diffuser Simulation 

Framework 

N Array Well depths 

based on the 

sequence 

Diffusion 

param at 

5m,     

Mean 

diffusion 

coeff,   
̅̅̅̅  

Significance of this 

diffuser 

 

Sim500 

 

7 

 

1 1 1 1 1 

 

13 9  8 10 8  9 13 

 

 

4.9786 

 

 

0.4716 

Best symmetrical base 

shape found via 

optimization in the array 

[1 0 1 1 0]. 

 

Sim500 

 

7 

 

1 0 1 1 0 

 

10  6  3  4  2  5  9 

 

 

4.9873 

 

0.5107 

Best asymmetrical base 

shape found via 

optimization and input 

from a human designer. 

 

Sim500 

 

7 

 

1 1 1 1 1 

 

17  2  6  5  6 2 17 

 

5.1029 

 

0.4039 

Loosely based on a 

stepped diffuser 

optimized by Cox [11]. 22 

 

Sim500 

 

7 

 

1 1 1 1 1 

1 0 1 1 0 

 

0  4  16  8  8 16 4 

 

5.0970 

5.2207 

 

0.4810 

0.4466 

QRD diffusers typically 

have fins between the 

wells. This one is finless. 
       

 

SimF500 
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1 1 1 1 1 

 

13  9 8 10  8 9 13 

 

 

2.3238 

 

0.5728 

 

Fractal form of A1-LF. 

 

SimF500 

 

72 

 

1 0 1 1 0 

 

10  6  3  4  2  5  9 

 

 

2.3038 

 

0.6331 

 

Fractal form of B2-LF. 

 

SimF500 
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1 1 1 1 1 

 

16.8   2  5.5   4.8 

5.5  2  16.8 

 

2.4171 

 

0.5016 

1st stage of this fractal 

closely approximates a 

stepped diffuser 

optimized by Cox [11]. 

 

                                                 

 

21 Good diffusion is expected when    is minimized and 0d is maximized.  
 

22 L95 is not identical to the stepped diffuser optimized by Cox [10], thus it should be viewed as a 

generic diffusive surface, not as an optimized diffuser. Likewise, the stepped QRD results do not 

represent the performance of a typical QRD (QRDs are typically designed with fins).  



 

 

58 

 

Included in Table 8 is a stepped diffuser based on the N = 7 quadratic residue sequence. 

There are no dividers between the wells of the stepped QRD, thus it does not recreate the 

performance of the equivalent finned QRD. The scattered polar distribution for this diffuser 

in both periodic and aperiodic arrays is featured in Appendix D. 

 

9.3. Analysis of optimized designs at a receiver radius of 5 m   

 

The diffusion parameter for the A1-LF array is reasonably uniform throughout the 

diffusion band (Figure 39), particularly above 1000 Hz. The plot of             dips 

between 200-1100 Hz. This is where the best diffusion is achieved. This range also contains 

the highest density of optimization frequencies, thus the achievements on the Sim500 

domain appear to be correlated with optimization on the Op250 domain. Regardless, the 

equivalent plot for Op250 (Figure 30) showed a more uniform diffusion parameter, 

demonstrating that optimal design at one radius does not equal optimal design at another 

radius.  

 

Based on the broadband diffusion parameter   , the A1-LF array was the top performer at 

both the 2.5 m and 5 m radius (Table 8).  A1-LF is also the most compact design, having a 

total depth of just 6 cm. One pitfall of the design is that that periodicity lobes cause an 

uneven polar response at certain frequencies. For example, Figure 41 depicts significant 

peaks and nulls in the scattered polar distribution at 750 Hz. This was an expected side 

effect of placing modules in a periodic array—and to circumvent this, B2-LF was designed 

using aperiodic modulation.  Another shortcoming of the shallow A1-LF design is that it is 

expected to exhibit less temporal dispersion than a deeper diffuser. This is not a major 

concern because uniform spatial dispersion produces temporal variation as a side effect [1]. 

 

The B2-LF array has slightly inferior diffusion when compared with A1-LF.  Figure 40 

reveals that      has significant variance, therefore    will accumulate a significant 

penalty23. Spectral variance in      exists because the standard error of the polar response 

varies with frequency. At each frequency, the polar response is effected by geometry, and it 

follows that the asymmetry in B2-LF has contributed to a less-than-uniform scattered 

distribution. This is depicted in Figure 43 and the supplemental plots in Appendix D. Even 

though the aperiodic modulation thwarts the effects of periodicity, the resulting design is 

inferior to A1-LF. B2-LF has worse performance, more complicated geometry and a deeper 

form factor. However, at 9 cm deep B2-LF remains shallower than most commercial 

diffusers.  

                                                 

 

23 Recall that    depends on both the mean value and standard error of     . 
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Figure 39  Diffusion parameter             for the diffuser array A1-LF. 

 

 
Figure 40  Diffusion parameter             for the diffuser array B2-LF. 

 

 

 

Figure 41  Scattering from the A1-LF periodic array at a receiver radius of 5 m. 

The local peaks and nulls at 750 Hz are caused by periodicity. 
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Figure 42  Scattered polar distribution for the optimized diffuser array A1-LF. 

 

 

 
Figure 43  Scattered polar distribution for the optimized diffuser array B2-LF. 
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Figure 44 and Figure 45 show the autocorrelation diffusion coefficient spectra for the two 

optimized diffusers. The diffusion coefficient for a 0° incident source,   , was calculated 

using Eq. (5.4). Eq.  (5.5) was used to obtain the normalized diffusion coefficient,    . A 

reference for the normalization was created by simulating a plane reflector the same width 

as the diffuser.  

 

Research Update: The following coefficient plots were updated in 2012 

 

In the images below (produced using AFMG Reflex Software), the diffusion coefficient has 

been averaged in one-third octave bands and plotted as a function of frequency. High values 

of the diffusion coefficient indicate that a surface scatters sound uniformly to all receivers; 

low values tell us that a surface is concentrating reflected energy in one direction. Detailed 

performance reports for these diffusers — and other optimized diffusers — are available at 

http://arqen.com/sound-diffusers/. 

 

 

  
Figure 44  Diffusion coefficient spectra for A1-LF. Diffuse field (left). 0° incidence (right). 

 

 

    
Figure 45  Diffusion coefficient spectra for B2-LF. Diffuse field (left). 0° incidence (right). 

http://arqen.com/sound-diffusers/download/
http://arqen.com/sound-diffusers/


 

 

62 

 

 
Figure 46  Diffuse field performance report for A1-LF array. Produced in AFMG Reflex. 

 

 
Figure 47  Diffuse field performance report for B2-LF array. Produced in AFMG Reflex. 
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9.3.1. Applying profiled modulations to the optimized base shape 

Because the A1-LF module is symmetrical, 5 modules placed side-by-side form a periodic 

array. A great way to increase the diffusion performance is to reduce this periodicity by 

mounting the modules at different depths. This will be called a profiled modulation.  

 

Profiled Modulation 1: Mounting 5 Modules to Prevent Periodicity 

 

The image below shows an example where 5 A1-LF modules have been mounted at specific 

depths. Using BEM simulations in AFMG Reflex, these profile depths were determined by 

trial and error to be [0 cm, 5 cm, 6 cm, 5 cm, 0 cm]. 

 

 
Figure 48  Profiled Modulation 1 coefficient spectra. Diffuse field (left).  0° incidence (right). 

 

 

Profiled Modulation 2: Mounting 7 Modules to Prevent Periodicity (Fractal Modulation) 

 

Profiled Modulation 2 uses seven A1-LF (Leanfuser™) modules mounted at different depths 

based on fractal self-symmetry. The seven mounting depths are derived from the depth 

sequence of the A1-LF module. The resulting diffuser has basic fractal geometry; therefore, 

this will be called a fractal modulation. This modulation could also be applied to the A1-frac 

module (the fractal version of A1-LF), resulting in a 3rd order nested fractal. 

 

The mounting sequence [0, 8, 10, 6, 10, 8, 0] cm is based on the depth sequence of the A1-LF 

module multiplied by two: 2[0, 4, 5, 3, 5, 4, 0] cm = [0, 8, 10, 6, 10, 8, 0] cm. 
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The scaling factor was determined experimentally by simulating various profiled 

modulations using AMFG Reflex. A scaling factor of two was chosen because it creates a 

shallow profiled diffuser that offers good performance with minimal depth. 

 

 

 

 
Figure 49  Profiled Modulation 2 coefficient spectra. Diffuse field (left). 0° incidence (right). 

 

 

Deep Fractal Modulation:  

 

If a thick diffuser was desired, one could take the fractal self-symmetry concept more 

literally. For example, a low frequency fractal stage can be designed with the proportions 

equal to the stepped diffuser proportions (I.e., keeping the same width:depth ratio). For the 

A1-LF module, the width:depth ratio = 42 cm / 5 cm = 8.4. Therefore, for an array of 7 

diffuser modules (294 cm wide), the deepest step of the profiled modulation would be 294 

cm / 8.4 = 35 cm. Since the deepest step of the A1-LF module is 5 cm, one would scale all 

the depths by 35 cm / 5 cm = 7.  

 

This would give a profiled modulation of 7x[0, 4, 5, 3, 5, 4, 0] cm = [0, 28, 35, 21, 35, 28, 0] 

cm. The resulting diffuser would have an operational depth of 40 cm, which is much deeper 

than the other designs mentioned here. The expected benefit of this deeper diffuser would 

be a lower cut-in frequency (extending the diffusion bandwidth into the low end). 

  

http://reflex.afmg.eu/
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9.4. Analysis of fractal designs at a receiver radius of 5 m   

 

Fractalization has resulted in high frequency performance gains. The results show that 

while A1-LF has superior performance as a base shape, B2-Frac is the better fractal sound 

diffuser. B2-Frac dominates Table 8 with a broadband diffusion parameter of 2.3038 and a 

mean autocorrelation diffusion coefficient of 0.6331. The diffusion coefficient can only be 

compared between designs that were simulated on the same simulation domain, in this case 

SimF500. Given that a different simulation framework was used in Section 9.3, verifying 

the performance gains will require simulating all diffusers on the SimF500 framework. 

This is not a quick task, as it takes about 22 hours to compute a single SimF500 prediction 

on an i7 2600K processor. 

 

 

 
Figure 50  Simulation of near field scattering from fractal diffusers A1-Frac. 

 

 

 
Figure 51  Simulation of near field scattering from fractal diffusers B2-Frac. 
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Figure 52 shows that for A1-Frac and B2-Frac, the diffusion parameter spectral envelope is 

reasonably24 uniform between 200-5000 Hz (ignoring local fluctuations). The diffusers 

achieve an    of 2.3238 and 2.3038 respectively, which is substantially lower than the    of  

2.4171 achieved by L95-Frac.  

 

 

 

 
Figure 52  Diffusion parameter ε(10m,5m,f) for fractals based on optimized diffusers. 

Top: A1-Frac periodic array. Bottom: B2-Frac aperiodic array with modulation {1 0 1 1 0}. 

 

 

                                                 

 
24 Qualitative observations such as “reasonably uniform” are based on comparisons to other surfaces. 

In this chapter, it means noticeably better than the equivalent result of L95-Frac. 
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The scattered polar distributions give a more intuitive indication of the scattering quality; 

however, this is not a reliable way to critically assess diffusers. Here is why: the scattered 

pressure level from A1-Frac looks highly uniform for all three frequencies shown in Figure 

53.  In Figure 55 the frequency 1250 Hz was swapped for the 750 Hz and the dB range of 

the polar plot was changed. The resulting plot tells a completely different story about this 

diffuser. The response at 750 Hz much less uniform than at 1250 Hz, and the rescaling of 

the plot reveals two narrow nulls in the polar distribution at 500 Hz. 

  

Figure 55 shows that A1-Frac exhibits the same periodicity lobes as A1-LF at 750 Hz. This 

confirms that the mid-frequency characteristics of the original optimized form, A1-LF, have 

been preserved in the fractal form. B2-Frac, however, has undergone a more notable change 

during fractalization—and it shows in the polar response. Figure 55 clearly illustrates the 

superior uniform dispersion achieved by B2-Frac below 800 Hz. Figure 56 shows that B2-

Frac produces an asymmetrical response that tends to approximate scattering. The 

asymmetry is fundamentally due to the asymmetrical base shape. Fortunately, the 

aperiodic modulation {1 0 1 1 0} has a secondary purpose: it creates symmetrical forms with 

four of the modules in the B2-Frac array (Figure 51). Thanks to this sequence, asymmetry 

in the polar response is mild, and periodicity is avoided. 

 

When they become available, the autocorrelation diffusion coefficients for these fractal 

diffusers will be posted to http://arqen.com/sound-diffusers/.  

 

 
Figure 53  Scattering from the A1-Frac array.  

Fluctuations are under-exaggerated because the 

0 dB contour is not at the center of the plot. 

 

http://arqen.com/sound-diffusers/
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Figure 54  Scattering from the A1-Frac array (left) and B2-Frac array (right)  

 

 

 

 
Figure 55  Scattered polar distribution for the diffuser array A1-Frac. 

 

 

 

 
Figure 56  Scattered polar distribution for the diffuser array B2-Frac. 
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9.5. Comparing simple optimized diffusers 

 

Figure 58 shows the autocorrelation diffusion coefficient for 5 periods of an N=7 stepped 

diffuser optimized by Cox [11]. This design will be called L95. It has higher performance 

below 630 Hz than the periodic array of A1-LF modules (Figure 57), which is expected, 

because A1-LF is much shallower. However, above 500 Hz the periodic array of L95 

diffusers cannot compete with the performance of Profiled Modulation 1 (Figure 59). 

 

When the A1-LF modules are arranged into Profiled Modulation 1, they achieve superior 

performance to L95, with similar build complexity and less operational depth (11 cm for 

Profiled Modulation 1 vs. 14.8 cm for L96). 

 

 

 
Figure 57  Diffuse field performance report for A1-LF array. Produced in AFMG Reflex. 
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Figure 58  Diffuse field performance report for 5 periods of optimized diffuser L95 [11].  

 

 

 
Figure 59  Profiled Modulation 1 coefficient spectra. Diffuse field (left).  0° incidence (right). 
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10. CONCLUSIONS 

 

The objective was to design a modular diffuser that provides an optimal trade-off between 

uniform scattering and compact geometry, and to design it without using boundary element 

predictions. The approach involved leveraging the strengths of finite difference time domain 

simulation, while accommodating the weaknesses. Success relied on cyclic prototyping and 

the intrinsically parallel property of evolutionary algorithms.  

 

The following conclusions were drawn from this work: 

 

1. A suitable solution to the design problem in Chapter 3 has been found. As shown in 

Sections 7.3 and 9.3, constrained optimization using seven variables produced a low 

profile modular stepped diffuser, A1-LF. A1-LF consists of five periods of a module with 

step heights of {0 4 5 3 5 4 0} cm. Of all candidate solutions evaluated, this ‘optimum’ 

design had the most uniform dispersion, which it accomplished with a structural depth 

of just 6 cm—one third the depth of typical stepped diffusers [11,1]. 

 

2. Diffusers with more uniform broadband scattering (better performance) were found by 

simulating fractal formations based on optimized diffusers.  

 

3. While computationally intensive, time domain methods can be used as a practical 

prediction model for diffuser optimization. Special accommodations were necessary to 

make optimization feasible on the discrete time domain mesh. Namely, mixed integer 

programming was necessary because the solution space was constrained to discrete 

points. This was justified as an avenue worth exploring because it allowed a simple 

prediction model to be used, with no need for a well-depth impedance function. The 

resulting “lean” optimization framework chooses designs using low-resolution parallel 

search optimization, and simulates them with accuracy comparable to a BEM. For 1200 

scattering evaluations the solution time was reasonable (about 40 hours). Additionally, 

FDTD and other time domain methods are worth exploring because they gives direct 

access to the temporal response, which may be used in future work to evaluate the 

temporal dispersion.  

 

4. Optimization using an intrinsically parallel method that includes an element of 

randomness, like the integer genetic algorithm, is fruitful for finding designs with 

comparable performance but very different geometries. 
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5. Seven-well diffusers based purely on the set of natural numbers up to 16 can achieve 

very good performance. Traditional diffuser design has relied on a few known optimal 

number sequences (e.g., quadratic residue and primitive root sequences). In contrast, 

Cox [11] defined optimized stepped diffusers using high precision (e.g., the set of natural 

numbers up to 200). The current work executed a broader search of the solution space 

using low precision, such that solutions are based on simple number sequences. The 

results confirm that when designing a stepped diffuser with uniform broadband 

dispersion, there are numerous low-integer sequences that are superior to the quadratic 

residue sequence.  

 

6. The designs are simple to implement. The optimization framework produces sequences 

of low natural numbers, useful for designers who need to work in low precision. The 

resulting designs can be constructed by carpenters or hobbyists, on-site, out of any 

suitable material that has a low absorption coefficient. Additionally, these low-natural 

number sequences reduce the cost of manufacturing and simulating fractal formations 

because they enable high accuracy with low precision.  

 

7. Results support the hypothesis that diffusers optimized for uniform scattering over a 2.5 

m receiver radius tend to exhibit as good or better diffusion at a 5 m receiver radius. 

Conversely, diffuser design standards focus on the 5 m receiver radius, which does not 

guarantee good performance at a smaller radius. In home studios and compact control 

rooms with suboptimal dimensions the 2.5 m receiver radius may be more realistic25.  

 

 

  

                                                 

 

25 This assumes that the diffuser array is placed with the intention of dispersing first 

reflections from either the back wall or a lofted ceiling. 
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10.1. Enhancements and Future Research  

  

The optimization is designed to be functional, but not efficient. Future investigations might 

address the following: 

 

1. If the near field to far field transformation (NFFFT) is utilized, FDTD scattering 

predictions will be computationally feasible at a much larger radius.   

 

2. It is expected that the computation can be sped up by orders of magnitude if it is run on 

graphics processing units instead of a CPU.  

 

3. To search the solution space more efficiently, multiple evolutionary algorithms can be 

run in parallel with the Matlab parallel computing toolbox. An alternative that was 

explored during testing is to use a meta-heuristic global optimizer that combines 

multiple optimization methods to increase the likelihood of finding the global optimum 

[26].  

 

4. The computation can be greatly sped up if a boundary element model is used. The 

solution space will no longer be restricted to integers, but it may still be desirable to 

perform a low resolution global search of the design space to reveal unexpected regions 

that meet the design criteria. When a desired region is found, a continuous optimization 

method can be used to fine tune the well depths to achieve optimal diffusion. 

 

5. An impedance model can be used to define diffusers instead of setting the particle 

velocity to zero at selected mesh nodes. This will enable optimization over a higher 

resolution solution space without the requirement for a tiny mesh spacing. With a high 

resolution design space, continuous optimization techniques will be able to establish 

clear trends and the computational complexity of finding the global optimum will be 

reduced.   

 

6. Fractal forms may be optimized directly if one of the above approaches is used to either 

a) increase the efficiency of the scattering prediction or b) increase the resolution of the 

design space. The optimization algorithm could search for a solution over N degrees of 

freedom and by doing so optimize a 2nd order fractal module with 2N  wells (i.e., steps). 

Alternatively, N  low frequency wells and N   high frequency wells might be optimized 

independently and nested to form a quasi-fractal with 2N  wells. 
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7. A two-dimensional diffuser can be formed by using the Chinese remainder theorem to 

fold an optimized 1D design sequence into a 2D array [1]. 

 

8. Currently, optimization does not utilize all available data because it is performed at 

discrete frequencies. Instead, optimization can be applied across all FFT bins, using 

relative weighting to place greater importance on selected frequencies.  

 

9. The prediction model needs to be validated by comparing simulation results to real 

world measured results. The simplest approach is to precisely implement and simulate 

a design that has already been validated, such as those outlined by Cox [11,1] and 

D’Antonio [3,1].   

 

10. Data to analyze temporal dispersion is readily available from the time domain 

simulation.  Future research might focus on interpreting this data [22,1]. 
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%===================================================================================== 

% dfsrFDTD_lean.m                                  Author:   Tim Perry 

% Elec498: Diffuser Design by Optimization         Started:  2011-10-20 

%                                                   

% Finite difference time domain (FDTD) simulation of a rigid-wall acoustic diffuser.  

% Excitation source is a Ricker wavelet or a Gaussian pulse. 

% Boundary conditions have not been implemented. 

% 

% REFERENCES: 

% [1] Tiny_FDTD_v1.m by Nick Clark, 2007 

% [2] T.J Cox, "Designing Curved Diffusers for Performance Spaces", 1996 

% [3] T.J Cox and P. D'Antonio, Acoustic Absorbers and Diffusers, 2009 

%===================================================================================== 

Code removed in this web version of the report.
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%=====================================================================================

% diffuserFDTD.m                                   Author:   Tim Perry 

% Elec498: Diffuser Design by Optimization         Started:  2011-10-20 

%                                                   

% FDTD prediction model used to evaluate the scattering from a stepped 

% diffuser. Can be used as an objective function to be minimized by an 

% optimization algorithm. Due to the FDTD mesh spacing, optimization is 

% most naturally carried out using an when using an integer genetic algorithm. 

% 

% INPUT       

%  depths0        the well depths of a potential diffuser design.  

%                 e.g. [17 2 6 5 6 2 17]. Well depths will be rounded to the 

%                 nearest grid step. Grid spacing depends on the boolean 

%                 makeFractal. If makeFracal == true, the grid step is 

%                 smaller and a fractal formation will be created. 

%                  

% OUTPUT    

%  eps1_prime     a single value broadband diffuser parameter to be minimized 

%                 by an optimization algorithm.  

%                 eps1_prime = eps1_ave + eps1_error, defined in [2] 

% 

%  eps1_ave       the average diffusion parameter at the frequencies of interest 

%                 specified in the vector freqs2opt 

%  

%  eps1           the spatial-averaged diffusion parameter prior to 

%                 frequency averaging (a vector in terms of frequency) 

% 

% 

% REFERENCES   

% [1] B. Treeby and B.T. Cox, 2011. k-Wave Toolbox (http://www.k-wave.org) 
% [2] T.J Cox, "Designing Curved Diffusers for Performance Spaces", 1996. 

% [3] T.J Cox and P. D'Antonio, Acoustic Absorbers and Diffusers, 2009. 

%               

%===================================================================================== 

  

Code removed in this web version of the report.  
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%========================================================================== 

% Diffuser_Opti_Driver.m                           Author:   Tim Perry 

% Elec498: Diffuser Design by Optimization         Started:  2011-11-16 

%                                                    

% 

% REFERENCES:   

% [1] B. Treeby and B.T. Cox, 2011. k-Wave Toolbox (http://www.k-wave.org) 

% [2] T.J Cox, "Designing Curved Diffusers for Performance Spaces", 1996 

% [3] R. Oldenhuis, 2009 J. Vandekerckhove, 2006     

%     GODLIKE - A robust single-& multi-objective optimizer 

%     (http://www.mathworks.com/matlabcentral/fileexchange/24838) 

%========================================================================== 

  

Code removed in this web version of the report.  
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In the following plots, the scattered pressure level was obtained using the finite difference 

time domain simulation framework Sim1 (see Chapter 9 for details). Units are dB SPL. 

 

 

 

Scattered polar distribution for the optimized diffuser array A1-LF. 

 

 

 

 
Optimized diffuser array B2-LF. 
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Optimized diffuser array A3-LF. This aperiodic design was optimized for diffusion below1250 Hz. 

 
 

 
Five periods of an N = 7 stepped QRD. 

 

 
N = 7 stepped QRDs in the aperiodic array {1 0 1 1 0}. 
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